RESUMO
Ca2+ signaling via the store operated Ca2+ entry (SOCE) mediated by STIM1 and STIM2 proteins and the ORAI1 Ca2+ channel is important in saliva fluid secretion and has been associated with Sjogren's disease (SjD). However, there are no studies addressing STIM1/2 dysfunction in salivary glands or SjD in animal models. We report that mice lacking Stim1 and Stim2 (Stim1/2K14Cre(+)) in salivary glands exhibited reduced Ca2+ levels and hyposalivate. SOCE was functionally required for the activation of the Ca2+ activated Cl- channel ANO1. Ageing Stim1/2K14Cre(+) mice showed no evidence of lymphocytic infiltration or increased levels of autoantibodies characteristic of SjD, possibly associated with a downregulation of toll-like receptor 8 (Tlr8) expression. Salivary gland biopsies of SjD patients showed increased expression of STIM1 and TLR7/8. Our study shows that SOCE activates ANO1 function and fluid secretion in salivary glands and highlights a potential link between SOCE and TLR signaling in SjD.
RESUMO
Sjogren's disease (SjD) is an autoimmune disease characterized by xerostomia (dry mouth), lymphocytic infiltration into salivary glands and the presence of SSA and SSB autoantibodies. Xerostomia is caused by hypofunction of the salivary glands and has been involved in the development of SjD. Saliva production is regulated by parasympathetic input into the glands initiating intracellular Ca 2+ signals that activate the store operated Ca 2+ entry (SOCE) pathway eliciting sustained Ca 2+ influx. SOCE is mediated by the STIM1 and STIM2 proteins and the ORAI1 Ca 2+ channel. However, there are no studies on the effects of lack of STIM1/2 function in salivary acini in animal models and its impact on SjD. Here we report that male and female mice lacking Stim1 and Stim2 ( Stim1/2 K14Cre ) in salivary glands showed reduced intracellular Ca 2+ levels via SOCE in parotid acini and hyposalivate upon pilocarpine stimulation. Bulk RNASeq of the parotid glands of Stim1/2 K14Cre mice showed a decrease in the expression of Stim1/2 but no other Ca 2+ associated genes mediating saliva fluid secretion. SOCE was however functionally required for the activation of the Ca 2+ activated chloride channel ANO1. Despite hyposalivation, ageing Stim1/2 K14Cre mice showed no evidence of lymphocytic infiltration in the glands or elevated levels of SSA or SSB autoantibodies in the serum, which may be linked to the downregulation of the toll-like receptor 8 ( Tlr8 ). By contrast, salivary gland biopsies of SjD patients showed increased STIM1 and TLR8 expression, and induction of SOCE in a salivary gland cell line increased the expression of TLR8 . Our data demonstrate that SOCE is an important activator of ANO1 function and saliva fluid secretion in salivary glands. They also provide a novel link between SOCE and TLR8 signaling which may explain why loss of SOCE does not result in SjD.
RESUMO
OBJECTIVES: Healthcare-associated infections (HAIs) represent a major threat to patient safety and are associated with significant economic burden. Calculating the costs attributable to HAIs is challenging given the various sources of bias. Although HAIs as a reasonably preventable medical harm should have been closely linked to medical insurance incentives, there was little linkage between HAIs and medicare in western China owing to the lack of economic evaluation data. The present study aimed to generate estimates of the attributable costs associated with HAIs and the magnitude of costs growth. METHODS: In this cohort study designed horizontally and vertically from 2016 to 2022, we compared outcomes of randomly sampling patients with HAIs and individually matched patients without HAIs in two cohorts at a 6-year interval at 34 hospitals in western China. The primary outcome was the direct medical cost for the entire hospital stay, converted to US dollars ($ for the benchmark year), discounted at 3% annually, and estimated separately in the full analysis set (FAS) and the per protocol set (PPS). We used multiple linear regression to adjust the discounted costs and to assess subgroups effects within each cohort. We nested a dynamic vertical comparison of costs attributable to HAIs between the front and rear cohorts. RESULTS: A total of 230 patients with HAIs in 2016 and 204 patients with HAIs in 2022 were enrolled. After a 1:1 match, all 431 pairs were recruited as FAS, of which 332 pairs as PPS met all matching restrictions. Compared to the 2016 cohort in FAS, the patients with HAIs in 2022 had a significantly older age (64.40 ± 16.45 years), higher repeat hospitalization rate (65 [32.02%] of 203), and lower immune function (69 [33.99%] of 203). The discounted costs and adjusted-discounted costs for patients with HAIs in the 2022 cohort were found to be significantly higher than those of patients without HAIs (discounted costs: $5484.60 [IQR 8426.03] vs $2554.04(4530.82), P < 0.001; adjusted-discounted costs: $5235.90 [3772.12] vs $3040.21(1823.36), P < 0.001, respectively), and also higher than those of patients with HAIs in the 2016 cohort (discounted costs: $5484.60 [8426.03] vs $3553.00 [6127.79], P < 0.001; adjusted-discounted costs: $5235.90 [3772.12] vs $3703.82 [3159.14], P < 0.001, respectively). In vertical comparison of PPS, the incremental costs of the 2022 cohort are 1.48 times higher than those of the 2016 cohort ($964.63(4076.15) vs $652.43 [2533.44], P = 0.084). CONCLUSIONS: This meticulously designed study in western China has successfully and accurately examined the economic burden attributable to HAIs. Their rapidly increasing tendency poses a serious challenge to patients, hospitals, and the medical insurance. A closer linkage between HAIs and ongoing motivating system changes is urgently needed in western China.
Assuntos
Infecção Hospitalar , Estresse Financeiro , Estados Unidos , Humanos , Idoso , Estudos de Coortes , Estudos Prospectivos , Medicare , Infecção Hospitalar/epidemiologia , Hospitais , China/epidemiologia , Atenção à SaúdeRESUMO
Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.
Assuntos
COVID-19 , Animais , Camundongos , Virulência , SARS-CoV-2 , Antivirais , Camundongos TransgênicosRESUMO
Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments and subsequent microbial mineralization. Here, we investigated controls on microbial community assembly in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S rRNA gene and dissimilatory sulfite reductase (dsrB) amplicon sequence data over six meters of depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were characterized by comparably high sedimentation rates and had "young" sediment ages of <500 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates (SRR), and C/N ratios were strongly correlated with differences in microbial community composition between GI and NGI sediments, indicating that age and diagenetic state were key drivers of microbial community assembly in subsurface sediments. Similar bacterial and archaeal communities were present in the surface sediments of all stations, whereas only in GI sediments were many surface taxa also abundant through the whole sediment core. The relative abundance of these taxa, including diverse Desulfobacteraceae members, correlated positively with SRRs, indicating their active contributions to sulfur-cycling processes. In contrast, other surface community members, such as Desulfatiglans, Atribacteria, and Chloroflexi, survived the slow sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are typical for the energy-limited marine deep biosphere and their relative abundances correlated positively with sediment age. In conclusion, our data suggests that high rates of sediment accumulation caused by glacier runoff and associated changes in biogeochemistry, promote persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial community into the deep subsurface.