RESUMO
BACKGROUND: We sought to find new biomarkers for abdominal aortic aneurysms (AAA) caused by chronic intermittent hypoxia (CIH). METHODS: The AAA mice model was created using Ang II. The mice were divided into normoxic and CIH groups. The structure of AAA was observed using abdominal ultrasonography, Elastica van Gieson (EVG), and hematoxylin and eosin (HE) staining. The expression of É-SMA was investigated using immunohistochemistry. The novel biomarkers were screened using bioinformatics analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to verify the expression of novel genes in both normal oxygen and CIH. RESULTS: CIH appears to cause greater aortic dilation, higher AAA incidence, lower survival rate, thicker vessel wall, and more brittle elastic lamellae when compared to controls. The immunohistochemistry results showed that the expression of É-SMA in the CIH group was reduced significantly. Four novel genes, including Homer2, Robo2, Ehf, and Asic1, were found to be differentially expressed between normal oxygen and CIH using qRT-PCR, indicating the same trend as bioinformatics analysis. CONCLUSIONS: We discovered that CIH could hasten the occurrence and progression of AAA. Four genes (Homer2, Robo2, Ehf, and Asic1) may be novel biomarkers for AAA, which could aid in the search for new therapies for patients with AAA caused by CIH.
Assuntos
Aneurisma da Aorta Abdominal , Apneia Obstrutiva do Sono , Camundongos , Animais , Resultado do Tratamento , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Imuno-Histoquímica , Oxigênio , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/metabolismo , Modelos Animais de Doenças , Hipóxia/genética , Proteínas de Arcabouço HomerRESUMO
PURPOSE: Our study aims to compare the difference in clinical efficacy between auto-trilevel positive airway pressure (auto-trilevel PAP) ventilator and conventional fixed bilevel positive airway pressure (BiPAP) ventilator for obesity hypoventilation syndrome (OHS) patients with coexisting moderate or severe obstructive sleep apnea hypopnea syndrome (OSAHS). METHODS: Twenty-three OHS patients with moderate or severe OSAHS enrolled between January 2015 and September 2017 underwent ventilation by three different modes of positive airway pressure (PAP) for 8 h per night. A single variable mode was applied at the first night followed by two nights when no PAP therapy was carried out as a washout period between each mode. The inspiratory positive airway pressure (IPAP) decided by PaCO2 was consistently used for modes 1, 2, and 3. In mode 1, the expiratory positive airway pressure (EPAP) issued by BiPAP was decided by the minimal PAP levels for cessation of snoring. However, in mode 2, the EPAP was fixed at 3 cmH2O higher than this value. With the use of auto-trilevel PAP in mode 3, the EPAP was set to initially match that of mode 1 but the end of EPAP (EEPAP) was automatically regulated to be elevated according to upper airway patency condition. We also compared the following parameters including apnea hypopnea index (AHI), minimal SpO2 (miniSpO2), arousal index, and sleep efficiency during sleep; PaCO2 in the morning and Epword sleepiness score (ESS) at daytime were measured prior to and during PAP treatment as well as between three selected PAP modes. RESULTS: Compared with the parameters before ventilation therapies, all three variable modes of ventilation were associated with a higher nocturnal miniSpO2 and sleep efficiency (all P < 0.01). Among the three variable modes, mode 3 resulted in not only the lowest arousal index and daytime ESS but also the highest sleep efficiency. Compared to mode 1, mode 2 demonstrated a significantly reduced AHI and an elevated miniSpO2 and morning PaCO2 (all P < 0.05), while mode 3 was associated with a decreased AHI, an increased miniSpO2 (all P < 0.05), and no statistical change of PaCO2 following the end of PAP treatment (P > 0.05). Comparison between mode 2 and mode 3 revealed that mode 3 had a significantly lower PaCO2 (P < 0.05), but displayed no remarkable changes of AHI and miniSpO2 (all P > 0.05). CONCLUSION: Compared to fixed BiPAP ventilation, auto-trilevel PAP ventilation could more effectively correct hypercapnia, achieve lower index of nocturnal apnea and hypopnea, more improved sleep quality, and lower daytime sleepiness score. Auto-trilevel PAP ventilation is therefore more efficacious than conventional BiPAP ventilation in non-invasive ventilation therapy for OHS patients with concurrent moderate or severe OSAHS.
Assuntos
Ventilação com Pressão Positiva Intermitente/métodos , Síndrome de Hipoventilação por Obesidade/terapia , Respiração com Pressão Positiva/métodos , Adulto , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Síndromes da Apneia do Sono/terapia , Resultado do TratamentoRESUMO
Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage. However, the underlying mechanism remains unclear. In this study, we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea. We found that sleep apnea aggravated brain edema, increased hippocampal neuron apoptosis, and worsened neurological function in this mouse model of subarachnoid hemorrhage. Then, we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died, and lactate dehydrogenase release increased, after 48 hours. We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1ß, interleukin-18, interleukin-6, nuclear factor κB, pyroptosis-related protein caspase-1, pro-caspase-1, and NLRP3, promoted the proliferation of astrocytes, and increased the expression of hypoxia-inducible factor 1α and apoptosis-associated speck-like protein containing a CARD, which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway. We also found that knockdown of hypoxia-inducible factor 1α expression in vitro greatly reduced the damage to HY22 cells. These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis, at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
RESUMO
BACKGROUND: ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. METHODS: Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. RESULTS: ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. CONCLUSIONS: ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest.
Assuntos
Autofagia/genética , Regulação Neoplásica da Expressão Gênica/genética , Paclitaxel/farmacologia , Proteínas rho de Ligação ao GTP/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Obstructive sleep apnea (OSA) is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, the effects of OSA on AAA initiation in a murine model of sleep apnea have not been completely studied. In this paper, Apoe-/- C57BL/6 mice infused with angiotensin II (Ang II) were placed in chronic intermittent hypoxia (CIH) condition for inducing OSA-related AAA. CIH significantly promoted the incidence of AAA and inhibited the survival of mice. By performing ultrasonography and elastic Van Gieson staining, CIH was found to be effective in promoting aortic dilation and elastin degradation. Immunohistochemical and zymography results show that CIH upregulated the expression and activity of MMP2 and MMP9 and upregulated MCP1 expression while downregulating α-SMA expression. Also, CIH exposure promoted ROS generation, apoptosis, and mitochondria damage in vascular smooth muscle cells (VSMCs), which were measured by ROS assay, TUNEL staining, and transmission electron microscopy. The result of RNA sequencing of mouse aortas displayed that 232 mRNAs were differently expressed between Ang II and Ang II+CIH groups, and CaMKII-dependent p38/Jnk was confirmed as one downstream signaling of CIH. CaMKII-IN-1, an inhibitor of CaMKII, eliminated the effects of CIH on the loss of primary VSMCs. To conclude, a mouse model of OSA-related AAA, which contains the phenotypes of both AAA and OSA, was established in this study. We suggested CIH as a risk factor of AAA initiation through CaMKII-dependent MAPK signaling.
Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Hipóxia Celular/fisiologia , Apneia Obstrutiva do Sono/complicações , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transdução de SinaisRESUMO
Asthma is characterized by airway inflammation and airway remodeling. Our previous study revealed that grape seed proanthocyanidin extract (GSPE) could inhibit asthmatic airway inflammation and airway hyper-responsiveness by down-regulation of inducible nitric oxide synthase in a murine model of acute asthma. The present study aimed to evaluate GSPE's effects on airway inflammation and airway remodeling in a chronic asthmatic model. BALB/c mice were sensitized with ovalbumin (OVA) and then were challenged three times a week for 8 weeks. Airway responsiveness was measured at 24 h after the last OVA challenge. HE staining, PAS staining, and Masson staining were used to observe any airway inflammation in the lung tissue, airway mucus secretion, and subepithelial fibrosis, respectively. The cytokines levels in the lavage fluid (BALF) in addition to the total serum immunoglobulin E (IgE) levels were detected by ELISA. Furthermore, lung collagen contents, α-smooth muscle actin (α-SMA), and transforming growth factor-ß1 (TGF-ß1) expression in the airway were assessed by hydroxyproline assay, immunohistochemistry, and Western blot analysis, respectively. GSPE administration significantly suppressed airway resistance as well as reduced the amount of inflammatory cells, especially the eosinophil count, in BALF. Additionally, the GSPE treatment markedly decreased interleukin (IL)-4, IL-13, and vascular endothelial growth factor (VEGF) levels in BALF in addition to the total serum IgE levels. A histological examination demonstrated that GSPE significantly ameliorated allergen-induced lung eosinophilic inflammation and decreased PAS-positive epithelial cells in the airway. The elevated hydroxyproline contents, lung α-SMA contents, and TGF-ß1 protein expression that were observed in the OVA mice were also inhibited by GSPE. In conclusion, GSPE could inhibit airway inflammation and airway remodeling in a murine model of chronic asthma, thus providing a potential treatment for asthma.