RESUMO
Jasmonate is an important endogenous chemical signal that plays a role in modulation of plant defense responses. To understand its mechanisms in regulation of rice resistance against the fungal pathogen Magnaporthe oryzae, comparative phenotype and proteomic analyses were undertaken using two near-isogenic cultivars with different levels of disease resistance. Methyl-jasmonate (MeJA) treatment significantly enhanced the resistance against M. oryzae in both cultivars but the treated resistant cultivar maintained a higher level of resistance than the same treated susceptible cultivars. Proteomic analysis revealed 26 and 16 MeJA-modulated proteins in resistant and susceptible cultivars, respectively, and both cultivars shared a common set of 13 proteins. Cumulatively, a total of 29 unique MeJA-influenced proteins were identified with many of them known to be associated with plant defense response and ROS accumulation. Consistent with the findings of proteomic analysis, MeJA treatment increased ROS accumulation in both cultivars with the resistant cultivar showing higher levels of ROS production and cell membrane damage than the susceptible cultivar. Taken together, our data add a new insight into the mechanisms of overall MeJA-induced rice defense response and provide a molecular basis of using MeJA to enhance fungal disease resistance in resistant and susceptible rice cultivars.