Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889515

RESUMO

The ß3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other ß neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While ß3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of ß3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric ß3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric ß3-containing nAChRs, while not excluding the possibility of a ß3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the ß3 nAChR subunit, in accordance with earlier functional studies on ß3-containing nAChRs.


Assuntos
Receptores Nicotínicos , Sítios de Ligação , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo
2.
Mol Pharmacol ; 96(5): 664-673, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492697

RESUMO

Many peptide ligands of nicotinic acetylcholine receptors (nAChRs) contain a large number of positively charged amino acid residues, a striking example being conotoxins RgIA and GeXIVA from marine mollusk venom, with an arginine content of >30%. To determine whether peptides built exclusively from arginine residues will interact with different nAChR subtypes or with their structural homologs such as the acetylcholine-binding protein and ligand-binding domain of the nAChR α9 subunit, we synthesized a series of R3, R6, R8, and R16 oligoarginines and investigated their activity by competition with radioiodinated α-bungarotoxin, two-electrode voltage-clamp electrophysiology, and calcium imaging. R6 and longer peptides inhibited muscle-type nAChRs, α7 nAChRs, and α3ß2 nAChRs in the micromolar range. The most efficient inhibition of ion currents was detected for muscle nAChR by R16 (IC50 = 157 nM) and for the α9α10 subtype by R8 and R16 (IC50 = 44 and 120 nM, respectively). Since the R8 affinity for other tested nAChRs was 100-fold lower, R8 appears to be a selective antagonist of α9α10 nAChR. For R8, the electrophysiological and competition experiments indicated the existence of two distinct binding sites on α9α10 nAChR. Since modified oligoarginines and other cationic molecules are widely used as cell-penetrating peptides, we studied several cationic polymers and demonstrated their nAChR inhibitory activity. SIGNIFICANT STATEMENT: By using radioligand analysis, electrophysiology, and calcium imaging, we found that oligoarginine peptides are a new group of inhibitors for muscle nicotinic acetylcholine receptors (nAChRs) and some neuronal nAChRs, the most active being those with 16 and 8 Arg residues. Such compounds and other cationic polymers are cell-penetrating tools for drug delivery, and we also demonstrated the inhibition of nAChRs for several of the latter. Possible positive and negative consequences of such an action should be taken into account.


Assuntos
Arginina/metabolismo , Arginina/farmacologia , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Animais , Arginina/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Antagonistas Nicotínicos/química , Peptídeos/química , Receptores Nicotínicos/metabolismo , Xenopus laevis
3.
Mar Drugs ; 16(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469507

RESUMO

α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.


Assuntos
Analgésicos/farmacologia , Conotoxinas/farmacologia , Caramujo Conus , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sítio Alostérico , Analgésicos/química , Animais , Conotoxinas/química , Desenho de Fármacos , Concentração Inibidora 50 , Antagonistas Nicotínicos/química , Oócitos , Ensaio Radioligante/métodos , Receptores Nicotínicos/química , Xenopus laevis
4.
Mol Pharmacol ; 87(5): 855-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740413

RESUMO

The α9α10 nicotinic acetylcholine receptor (nAChR) was first identified in the auditory system, where it mediates synaptic transmission between efferent olivocochlear cholinergic fibers and cochlea hair cells. This receptor gained further attention due to its potential role in chronic pain and breast and lung cancers. We previously showed that α-conotoxin (α-CTx) RgIA, one of the few α9α10 selective ligands identified to date, is 300-fold less potent on human versus rat α9α10 nAChR. This species difference was conferred by only one residue in the (-), rather than (+), binding region of the α9 subunit. In light of this unexpected discovery, we sought to determine other interacting residues with α-CTx RgIA. A previous molecular modeling study, based on the structure of the homologous molluscan acetylcholine-binding protein, predicted that RgIA interacts with three residues on the α9(+) face and two residues on the α10(-) face of the α9α10 nAChR. However, mutations of these residues had little or no effect on toxin block of the α9α10 nAChR. In contrast, mutations of homologous residues in the opposing nAChR subunits (α10 Ε197, P200 and α9 T61, D121) resulted in 19- to 1700-fold loss of toxin activity. Based on the crystal structure of the extracellular domain (ECD) of human α9 nAChR, we modeled the rat α9α10 ECD and its complexes with α-CTx RgIA and acetylcholine. Our data support the interaction of α-CTx RgIA at the α10/α9 rather than the α9/α10 nAChR subunit interface, and may facilitate the development of selective ligands with therapeutic potential.


Assuntos
Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Ratos
5.
Pharmaceutics ; 16(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675189

RESUMO

During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients' poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor.

6.
Transl Psychiatry ; 14(1): 146, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485715

RESUMO

There is growing evidence that autoantibodies (AAbs) against proteins expressed in the brain are playing an important role in neurological and psychiatric disorders. Here, we explore the presence and the role of peripheral AAbs to the α7-nicotinic acetylcholine receptor (nAChR) in inflammatory subgroups of psychiatric patients with bipolar disorder (BD) or schizophrenia (SCZ) and healthy controls. We have identified a continuum of AAb levels in serum when employing a novel ELISA technique, with a significant elevation in patients compared to controls. Using unsupervised two-step clustering to stratify all the subjects according to their immuno-inflammatory background, we delineate one subgroup consisting solely of psychiatric patients with severe symptoms, high inflammatory profile, and significantly increased levels of anti-nAChR AAbs. In this context, we have used monoclonal mouse anti-human α7-nAChR antibodies (α7-nAChR-mAbs) and shown that TNF-α release was enhanced upon LPS stimulation in macrophages pre-incubated with α7-nAChR-mAbs compared to the use of an isotype control. These findings provide a basis for further study of circulating nicotinic AAbs, and the inflammatory profile observed in patients with major mood and psychotic disorders.


Assuntos
Transtorno Bipolar , Receptores Nicotínicos , Esquizofrenia , Humanos , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7 , Inflamação/metabolismo , Autoanticorpos
7.
Expert Opin Ther Targets ; 28(5): 437-459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38828744

RESUMO

BACKGROUND: Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS: Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS: Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION: This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Benzimidazóis , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Benzimidazóis/farmacologia , Animais , Antivirais/farmacologia , Humanos , Chlorocebus aethiops , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Células Vero , Coelhos , Antagonistas de Receptores de Angiotensina/farmacologia , Compostos de Bifenilo/farmacologia , Anti-Hipertensivos/farmacologia , Tetrazóis/farmacologia , Masculino , Hipertensão/tratamento farmacológico , COVID-19 , Losartan/farmacologia , Ressonância de Plasmônio de Superfície
9.
Front Neurol ; 13: 858998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418927

RESUMO

Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies targeting components of the postsynaptic membrane of the neuromuscular junction (NMJ), leading to neuromuscular transmission deficiency. In the vast majority of patients, these autoantibodies target the nicotinic acetylcholine receptor (nAChR), a heteropentameric ion channel anchored to the postsynaptic membrane of the NMJ. Autoantibodies in patients with MG may target all the subunits of the receptor at both their extracellular and intracellular regions. Here, we combine immunoadsorption with a cell-based assay to examine the specificity of the patients' autoantibodies against the extracellular part of the nAChR. Our results reveal that these autoantibodies can be divided into distinct groups, based on their target, with probably different impacts on disease severity. Although our findings are based on a small sample group of patients, they strongly support that additional analysis of the specificity of the autoantibodies of patients with MG could serve as a valuable tool for the clinicians' decision on the treatment strategy to be followed.

10.
Biochim Biophys Acta ; 1794(2): 355-66, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059502

RESUMO

In order to facilitate structural studies of the extracellular domain (ECD) of human alpha7 nicotinic acetylcholine receptor (nAChR), we designed several mutants, since the wild-type-ECD forms large oligomers and microaggregates, and expressed them in the yeast Pichia pastoris. Mutant design was based on a 3D model of human alpha7-nAChR-ECD, constructed using as templates the X-ray crystal structure of the homologous acetylcholine-binding protein (AChBP) and the electron microscopy structure of the Torpedo alpha-nAChR-ECD. At least one mutant, mut10, carrying six single-point mutations (Phe3Tyr, Val69Thr, Cys116Ser, Ile165Thr, Val177Thr, Phe187Tyr) and the replacement of its Cys-loop with the corresponding and more hydrophilic AChBP Cys-loop, was expressed with a 4-fold higher expression yield (1.2 mg/L) than the wild-type alpha7-ECD, existing exclusively as a soluble oligomeric, probably pentameric, form, at concentrations up to at least 10 mg/mL, as judged by gel filtration and dynamic light scattering. This mutant displayed a significantly improved (125)I-alpha-bungarotoxin-binding affinity (K(d)=24 nM) compared to the wild-type-ECD (K(d)=70 nM), the binding being inhibited by unlabelled alpha-bungarotoxin, d-tubocurarine or nicotine (K(i) of 21.5 nM, 127 microM and 17.5 mM, respectively). Circular dichroism studies of mut10 revealed (a) a similar secondary structure composition ( approximately 5% alpha-helix, approximately 45% beta-sheet) to that of the AChBP, Torpedo alpha-nAChR-ECD, and mouse alpha1-nAChR-ECD, (b) a well-defined tertiary structure and (c) binding of small cholinergic ligands at micromolar concentrations. Furthermore, electron microscopy showed well-assembled, probably pentameric, particles of mut10. Finally, since deglycosylation did not alter its solubility or ligand-binding properties, mut10, in either its glycosylated or deglycosylated form, is a promising alpha7-ECD mutant for structural studies, useful for the rational drug design to treat alpha7-nAChR-related diseases.


Assuntos
Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Bungarotoxinas/química , Glicosilação , Humanos , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nicotina/química , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Pichia/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/genética , Solubilidade , Torpedo , Tubocurarina/química , Receptor Nicotínico de Acetilcolina alfa7
11.
IUBMB Life ; 61(4): 407-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19319967

RESUMO

Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.


Assuntos
Modelos Moleculares , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sítios de Ligação/genética , Estrutura Terciária de Proteína
12.
Front Pharmacol ; 10: 474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118896

RESUMO

The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(-), the α9(+)/α10(-), and the α10(+)/α9(-). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Å resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(-) or α10(+)/α9(-) rather than the α9(+)/α10(-) interface, in accordance with previous mutational and functional data.

13.
Br J Pharmacol ; 175(11): 1880-1891, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452148

RESUMO

Nicotinic ACh receptors (nAChRs) are the best studied members of the superfamily of pentameric ligand-gated ion channels (pLGICs). Neuronal nAChRs regulate neuronal excitability and neurotransmitter release in the nervous system and form either homo- or hetero-pentameric complexes with various combinations of the 11 neuronal nAChR subunits (α2-7, α9, α10 and ß2-4) known to exist in humans. In addition to their wide distribution in the nervous system, neuronal nAChRs have been also found in immune cells and many peripheral tissues. These nAChRs are important drug targets for neurological and neuropsychiatric diseases (e.g. Alzheimer's, schizophrenia) and substance addiction (e.g. nicotine), as well as in a variety of diseases such as chronic pain, auditory disorders and some cancers. To decipher the functional mechanisms of human nAChRs and develop efficient and specific therapeutic drugs, elucidation of their high-resolution structures is needed. Recent studies, including the X-ray crystal structures of the near-intact α4ß2 nAChR and of the ligand-binding domains of the α9 and α2 subunits, have advanced our knowledge on the detailed structure of the ligand-binding sites formed between the same and different subunits and revealed many other functionally important interactions. The aim of this review is to highlight some of the structural and functional findings of these studies and to compare them with recent breakthrough findings on other pLGIC members and earlier data from their homologous ACh-binding proteins. LINKED ARTICLES: This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.


Assuntos
Neurônios , Receptores Nicotínicos , Humanos , Modelos Moleculares , Neurônios/química , Neurônios/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade
14.
FEBS J ; 274(15): 3799-845, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17651090

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.


Assuntos
Músculos/química , Músculos/metabolismo , Neurônios/química , Neurônios/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Doença , Humanos , Ligação Proteica , Receptores Nicotínicos/genética , Receptores Nicotínicos/ultraestrutura , Virulência
15.
Int J Biol Macromol ; 41(4): 423-9, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17659334

RESUMO

The extracellular domains (ECDs) of human nicotinic acetylcholine receptors (nAChRs) are of major pharmacological interest as drug targets in the autoimmune disease myasthenia gravis and in various neurological disorders. We have previously expressed and purified the human muscle alpha1-, beta1-, gamma- and epsilon-nAChR-ECDs, as well as the wild type and a mutant of neuronal alpha7-ECD, in yeast Pichia pastoris. The far-UV circular dichroism (CD) studies of these ECDs, presented here, revealed a major prevalence of beta-sheet ( approximately 40%) and a small proportion of alpha-helical ( approximately 5%) structure for all ECDs, in good agreement with the secondary structure composition of the Torpedo muscle-type nAChR-ECDs and in less, but considerable, agreement with that of the homologous invertebrate acetylcholine-binding proteins (AChBPs). The near-UV CD studies of these nAChR-ECDs indicated well-defined tertiary structures, as was previously suggested by biochemical and immunochemical studies. Furthermore, the binding of cholinergic ligands to the mutant of alpha7-ECD resulted in no changes in its secondary structure, but revealed significant local conformational changes. Our present studies probe the structure of human nAChR-ECDs for the first time and further suggest that our expressed proteins fold to a near-native conformation, thus being suitable for further structural studies.


Assuntos
Dicroísmo Circular/métodos , Receptores Nicotínicos/química , Sequência de Aminoácidos , Bungarotoxinas/farmacologia , Carbacol/farmacologia , Clonagem Molecular , DNA Complementar , Vetores Genéticos , Humanos , Ligantes , Dados de Sequência Molecular , Pichia/genética , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
16.
PLoS One ; 12(10): e0186206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023569

RESUMO

Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely ß-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic ß-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 µM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and ß-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.


Assuntos
Neurônios/fisiologia , Pâncreas/enzimologia , Fosfolipases A2/farmacologia , Venenos de Serpentes/enzimologia , Acetilcolina/metabolismo , Animais , Bungarotoxinas/farmacologia , Crotoxina/farmacologia , Humanos , Lymnaea/citologia , Neurônios/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Suínos/metabolismo , Xenopus laevis/genética
17.
FEBS J ; 273(15): 3557-68, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16884496

RESUMO

The nicotinic acetylcholine receptor (AChR) is a ligand-gated ion channel found in muscles and neurons. Muscle AChR, formed by five homologous subunits (alpha2 beta gamma delta or alpha2 beta gamma epsilon), is the major antigen in the autoimmune disease, myasthenia gravis (MG), in which pathogenic autoantibodies bind to, and inactivate, the AChR. The extracellular domain (ECD) of the human muscle alpha subunit has been heterologously expressed and extensively studied. Our aim was to obtain satisfactory amounts of the ECDs of the non-alpha subunits of human muscle AChR for use as starting material for the determination of the 3D structure of the receptor ECDs and for the characterization of the specificities of antibodies in sera from patients with MG. We expressed the N-terminal ECDs of the beta (amino acids 1-221; beta1-221), gamma (amino acids 1-218; gamma1-218), and epsilon (amino acids 1-219; epsilon1-219) subunits of human muscle AChR in the yeast, Pichia pastoris. beta1-221 was expressed at approximately 2 mg.L(-1) culture, whereas gamma1-218 and epsilon1-219 were expressed at 0.3-0.8 mg.L(-1) culture. All three recombinant polypeptides were glycosylated and soluble; beta1-221 was mainly in an apparently dimeric form, whereas gamma1-218 and epsilon1-219 formed soluble oligomers. CD studies of beta1-221 suggested that it has considerable beta-sheet secondary structure with a proportion of alpha-helix. Conformation-dependent mAbs against the ECDs of the beta or gamma subunits specifically recognized beta1-221 or gamma1-218, respectively, and polyclonal rabbit antiserum raised against purified beta1-221 bound to (125)I-labeled alpha-bungarotoxin-labeled human AChR. Moreover, immobilization of each ECD on Sepharose beads and incubation of the ECD-Sepharose matrices with MG sera caused a significant reduction in the concentrations of autoantibodies in the sera, showing specific binding to the recombinant ECDs. These results suggest that the expressed proteins present some near-native conformational features and are thus suitable for our purposes.


Assuntos
Músculos/metabolismo , Receptores Colinérgicos/metabolismo , Anticorpos Monoclonais/metabolismo , Sequência de Bases , Cromatografia em Gel , Cromatografia Líquida , Dicroísmo Circular , Clonagem Molecular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Glicosilação , Humanos , Reação em Cadeia da Polimerase , Radioimunoensaio , Receptores Colinérgicos/química , Solubilidade
18.
Immunobiology ; 221(12): 1355-1361, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27498631

RESUMO

Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) attenuate the inflammatory cytokines production by macrophages and are involved in pathogenesis of Alzheimer disease by directly influencing the processing of amyloid-beta (Aß) precursor protein in the brain. Previously we found that regular injections of bacterial lipopolysaccharide (LPS) decreased the level of α7 nAChRs and stimulated accumulation of Aß peptide (1-42) in the brain of mice resulting in memory impairment. Similar effects were observed in mice immunized with recombinant extracellular domain (1-208) of α7 nAChR subunit. However, the mechanism of inflammation-like effect of α7-specific antibodies remained unclear. The aim of the present study was to reveal the impact of carbohydrate component of recombinant α7(1-208) produced in yeast in the functional effect of resulting antibodies. For this purpose, C57Bl/6 mice were immunized with either initial α7(1-208) or with that pre-treated with endoglycosidase. Control groups of mice obtained injections of either LPS or complete Freund's adjuvant. Mice were tested for memory performance, their blood sera were examined for the presence and fine specificity of α7(1-208)-specific antibodies and the brain preparations were studied for the levels of α7 nAChR, Aß(1-42) and interleukin-6. It was found that the original α7(1-208) was more immunogenic than the deglycosylated one, and their epitopes were recognized with different efficiency. In contrast to LPS and original α7(1-208), deglycosylated α7(1-208) did not stimulate interleukin-6 elevation in the brain, i.e. had no pro-inflammatory effect. Nevertheless, immunizations with either the original or deglycosylated α7(1-208) resulted in similar decrease of α7 nAChRs, accumulation of Aß(1-42) in the brain and significant episodic memory decline, comparable to those exerted by LPS injections. We conclude that the decrease of α7 nAChR density, caused by α7(1-208)-specific antibody, is critical for Aß(1-42) accumulation and episodic memory impairment, while pro-inflammatory capacity of α7(1-208)-specific antibody plays a secondary role for the development of Alzheimer-like symptoms.


Assuntos
Doença de Alzheimer/imunologia , Precursor de Proteína beta-Amiloide/imunologia , Encéfalo/imunologia , Carboidratos/imunologia , Macrófagos/imunologia , Peptídeos/imunologia , Receptor Nicotínico de Acetilcolina alfa7/imunologia , Animais , Anticorpos/sangue , Carboidratos/genética , Células Cultivadas , Epitopos de Linfócito B/imunologia , Espaço Extracelular , Feminino , Glicosídeo Hidrolases/química , Humanos , Interleucina-6/metabolismo , Testes de Memória e Aprendizagem , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/genética
19.
Int Immunopharmacol ; 29(1): 148-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25887272

RESUMO

α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory reactions, as well as the cell viability. They are expressed in both the plasma membrane and mitochondria of eukaryotic cells. Previously we found that neuroinflammation resulted in the decrease of α7 nAChR density in the brain of mice and was accompanied by accumulation of amyloid-beta (Aß) peptides and memory impairment. In the present paper, it is shown that inflammation induced by either regular bacterial lipopolysaccharide (LPS) injections or immunizations with α7 nAChR extracellular domain (1-208) affected also the brain cell mitochondria. Using various modifications of sandwich ELISA, we observed the decrease of α7 nAChRs and accumulation of Aß(1-40) and Aß(1-42) in mitochondria of immunized or LPS-treated mice compared to control ones. Mitochondria of treated mice responded with cytochrome c release to lower Ca(2+) concentrations than mitochondria of control mice and were less sensitive to its attenuation with α7 nAChR agonist PNU282987. It is concluded that inflammation decreases α7 nAChR expression in both mitochondria and cell plasma membrane and makes mitochondria more susceptible to apoptosis induction.


Assuntos
Apoptose/fisiologia , Encéfalo/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Anticorpos/imunologia , Benzamidas , Compostos Bicíclicos com Pontes , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/imunologia
20.
PLoS One ; 10(3): e0122706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816313

RESUMO

Nicotinic acetylcholine receptors (nAChRs) expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of ß-amyloid (Aß42), memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208) or injected with bacterial lipopolysaccharide (LPS) for 5 months. We studied their behavior and the presence of α3, α4, α7, ß2 and ß4 nAChR subunits, Aß40 and Aß42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208) resulted in region-specific decrease of α7 and α4ß2 and increase of α3ß4 nAChRs, accumulation of Aß42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1) neuroinflammation is sufficient to provoke the decrease of α7 and α4ß2 nAChRs, Aß42 accumulation and memory impairment in mice and (2) α7(1-208) nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.


Assuntos
Doença de Alzheimer/imunologia , Inflamação/imunologia , Receptores Nicotínicos/imunologia , Receptor Nicotínico de Acetilcolina alfa7/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-6/imunologia , Lipopolissacarídeos/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/imunologia , Transtornos da Memória/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Receptores Nicotínicos/administração & dosagem , Receptor Nicotínico de Acetilcolina alfa7/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA