Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(4): 2135-2143, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416303

RESUMO

Lipids, such for example the multifaceted category of glycerophospholipids (GP), play a major role in many biological processes. High-resolution mass spectrometry is able to identify these highly diverse lipid species in combination with fragmentation experiments (MS/MS) on the basis of the accurate m/z and fragmentation pattern. However, for the differentiation of isomeric lipids or isobaric interferences, more elaborate separation methods are required. Especially for imaging techniques, such as matrix-assisted laser desorption/ionization (MALDI)-MS imaging, the identification is often exclusively based on the accurate m/z. Fragmentation via MS/MS increases the confidence in lipid annotation in imaging approaches. However, this is sometimes not feasible due to insufficient sensitivity and significantly prolonged analysis time. The use of a separation dimension such as trapped ion mobility spectrometry (TIMS) after ionization strengthens the confidence of the identification based on the collision cross section (CCS). Since CCS libraries are limited, a tissue-specific database was initially generated using hydrophilic interaction liquid chromatography-TIMS-MS. Using this database, the identification of isomeric lipid classes as well as isobaric interferences in a lipid class was performed using a mouse spleen sample in a workflow described in this study. Besides a CCS-based identification as an additional identification criterion for GP in general, the focus was on the distinction of the isomeric GP classes phosphatidylglycerol and bis(monoacylglycero)phosphate, as well as the differentiation of possible isobaric interferences based on the formation of adducts by MALDI-TIMS-MS imaging on a molecular level.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica/métodos , Fosfolipídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Camundongos
2.
J Nat Prod ; 83(9): 2607-2617, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32822175

RESUMO

Increasingly sensitive analytical instruments and robust downstream data processing tools have revolutionized natural product research over the past decade. A molecular networking-guided survey led to the identification of 33 new cyclic lipopeptides (CLPs) from the culture broth of the proteobacterium Pseudomonas sp. FhG100052. The compound family resembles members of the amphisin group of CLPs that possess a 3-hydroxy fatty acid linked to the N-terminus of an undecapeptide core. Culture optimization led to the isolation and subsequent structure elucidation of one known and five new derivatives by extensive MS/MS and NMR experiments in combination with Marfey's analysis. The data were in agreement with in silico analysis of the corresponding biosynthetic gene cluster. Most strikingly, the length of the incorporated fatty acid defined the growth inhibitory effects against Moraxella catarrhalis FH6810, as observed by MIC values ranging from no inhibition (>128 µg/mL) to 4 µg/mL.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Redes Reguladoras de Genes , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Pseudomonas/genética , Pseudomonas/metabolismo , Candida albicans/efeitos dos fármacos , Simulação por Computador , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Moraxella catarrhalis/efeitos dos fármacos , Família Multigênica , Mycobacterium smegmatis/efeitos dos fármacos
3.
Chembiochem ; 17(9): 792-8, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26789439

RESUMO

The α',ß'-epoxyketone moiety of proteasome inhibitors confers high binding specificity to the N-terminal threonine in catalytic proteasome ß-subunits. We recently identified the epoxomicin and eponemycin biosynthetic gene clusters and have now conducted isotope-enriched precursor feeding studies and comprehensive gene deletion experiments to shed further light on their biosynthetic pathways. Leucine and two methyl groups from S-adenosylmethionine were readily incorporated into the epoxyketone warhead, suggesting decarboxylation of the thioester intermediate. Formation of the α',ß'-epoxyketone is likely mediated by conserved acyl-CoA dehydrogenase-like enzymes, as indicated by complete loss of epoxomicin and eponemycin production in the respective knockout mutants. Our results clarify crucial questions in the formation of epoxyketone compounds and lay the foundation for in vitro biochemical studies on the biosynthesis of this pharmaceutically important class of proteasome inhibitors.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Serina/análogos & derivados , Acil-CoA Desidrogenase/genética , Amidas/química , Cromatografia Líquida de Alta Pressão , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Metionina/metabolismo , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/metabolismo , Serina/biossíntese , Serina/química , Streptomyces/genética , Streptomyces/metabolismo , Espectrometria de Massas em Tandem
4.
ChemMedChem ; 17(6): e202100644, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34699131

RESUMO

Tuberculosis represents one of the ten most common courses of death worldwide and the emergence of multidrug-resistant M. tuberculosis makes the discovery of novel anti-tuberculosis active structures an urgent priority. Here, we show that (+)-floyocidin B representing the first example of a novel dihydroisoquinoline class of fungus-derived natural products, displays promising antitubercular hit properties. (+)-Floyocidin B was identified by activity-guided extract screening and its structure was unambiguously determined by total synthesis. The absolute configuration was deduced from a key synthesis intermediate by single crystal X-ray diffraction analysis. A hit series was generated by the isolation of further natural congeners and the synthesis of analogs of (+)-floyocidin B. Extensive biological and physicochemical profiling of this series revealed first structure-activity relationships and set the basis for further optimization and development of this novel antitubercular scaffold.


Assuntos
Produtos Biológicos , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Produtos Biológicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
5.
ACS Synth Biol ; 6(3): 421-427, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28206741

RESUMO

During polyketide biosynthesis, acyltransferases (ATs) are the essential gatekeepers which provide the assembly lines with precursors and thus contribute greatly to structural diversity. Previously, we demonstrated that the discrete AT KirCII from the kirromycin antibiotic pathway accesses nonmalonate extender units. Here, we exploit the promiscuity of KirCII to generate new kirromycins with allyl- and propargyl-side chains in vivo, the latter were utilized as educts for further modification by "click" chemistry.


Assuntos
Aciltransferases/metabolismo , Policetídeos/metabolismo , Antibacterianos/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo , Piridonas/metabolismo
6.
PLoS One ; 8(12): e85707, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376894

RESUMO

The bacterium Micromonospora sp. RV115, isolated from a marine sponge, produces the unusual metabolite diazepinomicin, a prenylated benzodiazepine derivative. We have cloned the prenyltransferase gene dzmP from this organism, expressed it in Escherichia coli, and the resulting His8-tagged protein was purified and investigated biochemically. It was found to catalyze the farnesylation of the amide nitrogen of dibenzodiazepinone. DzmP belongs to the ABBA prenyltransferases and is the first member of this superfamily which utilizes farnesyl diphosphate as genuine substrate. All previously discovered members utilize either dimethylallyl diphosphate (C5) or geranyl diphosphate (C10). Another putative diazepinomicin biosynthetic gene cluster was identified in the genome of Streptomyces griseoflavus Tü4000, suggesting that the formation of diazepinomicin is not restricted to the genus Micromonospora. The gene cluster contains a gene ssrg_00986 with 61.4% identity (amino acid level) to dzmP. The gene was expressed in E. coli, and the purified protein showed similar catalytic properties as DzmP. Both enzymes also accepted other phenolic or phenazine substrates. ABBA prenyltransferases are useful tools for chemoenzymatic synthesis, due to their nature as soluble, stable biocatalysts. The discovery of DzmP and Ssrg_00986 extends the isoprenoid substrate range of this superfamily. The observed prenylation of an amide nitrogen is an unusual biochemical reaction.


Assuntos
Benzodiazepinas/metabolismo , Vias Biossintéticas/fisiologia , Dibenzazepinas/metabolismo , Dimetilaliltranstransferase/metabolismo , Micromonospora/genética , Família Multigênica/genética , Streptomyces/genética , Sequência de Aminoácidos , Animais , Benzodiazepinas/química , Vias Biossintéticas/genética , Catálise , Análise por Conglomerados , Biologia Computacional , Escherichia coli , Micromonospora/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Prenilação/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA