RESUMO
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Assuntos
Epigenoma , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pinus/genética , Aclimatação/genética , Cromossomos de Plantas/genética , Cycadopsida/genética , Elementos de DNA Transponíveis/genética , Florestas , Redes Reguladoras de Genes , Tamanho do Genoma , Genômica/métodos , Íntrons , Magnoliopsida/genéticaRESUMO
Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.
Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , PoliploidiaRESUMO
BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.
Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Fluxo de Trabalho , Melhoramento Vegetal , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
Assuntos
Elementos de DNA Transponíveis , Helianthus , Elementos de DNA Transponíveis/genética , Helianthus/genética , Genoma de Planta/genética , Evolução Molecular , GenômicaRESUMO
The wild relatives of rice hold unexplored genetic diversity that can be employed to feed an estimated population of 10 billion by 2050. The Oryza Map Alignment Project (OMAP) initiated in 2003 has provided comprehensive genomic resources for comparative, evolutionary, and functional characterization of the wild relatives of rice, facilitating the cloning of >600 rice genes, including those for grain width (GW5) and submergence tolerance (SUB1A). Following in the footsteps of the original project, the goal of 'IOMAP: the Americas' is to investigate the present and historic genetic diversity of wild Oryza species endemic to the Americas through the sequencing of herbaria and in situ specimens. The generation of a large diversity panel describing past and current genetic status and potential erosion of genetic variation in the populations will provide useful knowledge for the conservation of the biodiversity in these species. The wild relatives of rice in the Americas present a wide range of resistance traits useful for crop improvement and neodomestication approaches. In the race against time for a sustainable food future, the neodomestication of the first cereal species recently accomplished in O. alta opens the door to the potential neodomestication of the other wild Oryza species in Americas.
Assuntos
Oryza , Oryza/genética , Fenótipo , Genômica , Grão Comestível/genéticaRESUMO
Due to DNA heterozygosity and repeat content, assembly of non-model plant genomes is challenging. Herein, we report a high-quality genome reference of one of the oldest known domesticated species, fig (Ficus carica L.), using Pacific Biosciences single-molecule, real-time sequencing. The fig genome is ~333 Mbp in size, of which 80% has been anchored to 13 chromosomes. Genome-wide analysis of N6 -methyladenine and N4 -methylcytosine revealed high methylation levels in both genes and transposable elements, and a prevalence of methylated over non-methylated genes. Furthermore, the characterization of N6 -methyladenine sites led to the identification of ANHGA, a species-specific motif, which is prevalent for both genes and transposable elements. Finally, exploiting the contiguity of the 13 pseudomolecules, we identified 13 putative centromeric regions. The high-quality reference genome and the characterization of methylation profiles, provides an important resource for both fig breeding and for fundamental research into the relationship between epigenetic changes and phenotype, using fig as a model species.
Assuntos
Epigênese Genética/genética , Ficus/genética , Genoma de Planta/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Haplótipos , FenótipoRESUMO
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety "Big Star*" and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome-wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.
Assuntos
Domesticação , Genoma de Planta/genética , Prunus avium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA Satélite/genética , Genes de Plantas/genética , Variação Genética/genética , Genética PopulacionalRESUMO
The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).
Assuntos
Populus/genética , Evolução Biológica , DNA de Plantas/genética , Evolução Molecular , Variação Genética , Genética Populacional/métodos , Genoma de Planta , Genômica , Desequilíbrio de Ligação/genética , Filogenia , Seleção Genética/genética , Análise de Sequência de DNA/métodos , Árvores/genéticaRESUMO
Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.
Assuntos
Evolução Molecular , Genoma de Planta/genética , Picea/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Inativação Gênica , Genes de Plantas/genética , Genômica , Internet , Íntrons/genética , Fenótipo , RNA não Traduzido/genética , Análise de Sequência de DNA , Sequências Repetidas Terminais/genética , Transcrição Gênica/genéticaRESUMO
Transposable elements (TEs) are the most abundant genetic material for almost all eukaryotic genomes. Their effects on the host genomes range from an extensive size variation to the regulation of gene expression, altering gene function and creating new genes. Because of TEs pivotal contribute to the host genome structure and regulation, their identification and characterization provide a wealth of useful data for gaining an in-depth understanding of host genome functioning. The giant reed (Arundo donax) is a perennial rhizomatous C3 grass, octadecaploid, with an estimated nuclear genome size of 2744 Mbp. It is a promising feedstock for second-generation biofuels and biomethane production. To identify and characterize the most repetitive TEs in the genomes of A. donax and its ancestral A. plinii species, we carried out low-coverage whole genome shotgun sequencing for both species. Using a de novo repeat identification approach, 33,041 and 28,237 non-redundant repetitive sequences were identified and characterized in A. donax and A. plinii genomes, representing 37.55 and 31.68% of each genome, respectively. Comparative phylogenetic analyses, including the major TE classes identified in A. donax and A. plinii, together with rice and maize TE paralogs, were carried out to understand the evolutionary relationship of the most abundant TE classes. Highly conserved copies of RIRE1-like Ty1-Copia elements were discovered in two Arundo spp. in which they represented nearly 3% of each genomic sequence. We identified and characterized the medium/highly repetitive TEs in two unexplored polyploid genomes, thus generating useful information for the study of the genomic structure, composition, and functioning of these two non-model species. We provided a valuable resource that could be exploited in any effort aimed at sequencing and assembling these two genomes.
Assuntos
Biocombustíveis , Elementos de DNA Transponíveis , Poaceae/classificação , Poaceae/genética , DNA de Plantas/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequências Repetidas TerminaisRESUMO
BACKGROUND: Eragrostis tef is an allotetraploid (2n = 4 × = 40) annual, C4 grass with an estimated nuclear genome size of 730 Mbp. It is widely grown in Ethiopia, where it provides basic nutrition for more than half of the population. Although a draft assembly of the E. tef genome was made available in 2014, characterization of the repetitive portion of the E. tef genome has not been a subject of a detailed analysis. Repetitive sequences constitute most of the DNA in eukaryotic genomes. Transposable elements are usually the most abundant repetitive component in plant genomes. They contribute to genome size variation, cause mutations, can result in chromosomal rearrangements, and influence gene regulation. An extensive and in depth characterization of the repetitive component is essential in understanding the evolution and function of the genome. RESULTS: Using new paired-end sequence data and a de novo repeat identification strategy, we identified the most repetitive elements in the E. tef genome. Putative repeat sequences were annotated based on similarity to known repeat groups in other grasses. Altogether we identified 1,389 medium/highly repetitive sequences that collectively represent about 27% of the teff genome. Phylogenetic analyses of the most important classes of TEs were carried out in a comparative framework including paralog elements from rice and maize. Finally, an abundant tandem repeat accounting for more than 4% of the whole genome was identified and partially characterized. CONCLUSIONS: Analyzing a large sample of randomly sheared reads we obtained a library of the repetitive sequences of E. tef. The approach we used was designed to avoid underestimation of repeat contribution; such underestimation is characteristic of whole genome assembly projects. The data collected represent a valuable resource for further analysis of the genome of this important orphan crop.
Assuntos
DNA de Plantas , Eragrostis/genética , Genoma de Planta , Sequências Repetitivas de Ácido Nucleico , Elementos de DNA Transponíveis , Eragrostis/classificação , Biblioteca Gênica , FilogeniaRESUMO
BACKGROUND: Comparative evolutionary analysis of whole genomes requires not only accurate annotation of gene space, but also proper annotation of the repetitive fraction which is often the largest component of most if not all genomes larger than 50 kb in size. RESULTS: Here we present the Rice TE database (RiTE-db)--a genus-wide collection of transposable elements and repeated sequences across 11 diploid species of the genus Oryza and the closely-related out-group Leersia perrieri. The database consists of more than 170,000 entries divided into three main types: (i) a classified and curated set of publicly-available repeated sequences, (ii) a set of consensus assemblies of highly-repetitive sequences obtained from genome sequencing surveys of 12 species; and (iii) a set of full-length TEs, identified and extracted from 12 whole genome assemblies. CONCLUSIONS: This is the first report of a repeat dataset that spans the majority of repeat variability within an entire genus, and one that includes complete elements as well as unassembled repeats. The database allows sequence browsing, downloading, and similarity searches. Because of the strategy adopted, the RiTE-db opens a new path to unprecedented direct comparative studies that span the entire nuclear repeat content of 15 million years of Oryza diversity.
Assuntos
Bases de Dados Genéticas , Evolução Molecular , Genoma de Planta , Oryza/genética , Elementos de DNA Transponíveis/genética , Genômica , SoftwareRESUMO
BACKGROUND: The local environment plays a major role in the spatial distribution of plant populations. Natural plant populations have an extremely poor displacing capacity, so their continued survival in a given environment depends on how well they adapt to local pedoclimatic conditions. Genomic tools can be used to identify adaptive traits at a DNA level and to further our understanding of evolutionary processes. Here we report the use of genotyping-by-sequencing on local groups of the sequenced monocot model species Brachypodium distachyon. Exploiting population genetics, landscape genomics and genome wide association studies, we evaluate B. distachyon role as a natural probe for identifying genomic loci involved in environmental adaptation. RESULTS: Brachypodium distachyon individuals were sampled in nine locations with different ecologies and characterized with 16,697 SNPs. Variations in sequencing depth showed consistent patterns at 8,072 genomic bins, which were significantly enriched in transposable elements. We investigated the structuration and diversity of this collection, and exploited climatic data to identify loci with adaptive significance through i) two different approaches for genome wide association analyses considering climatic variation, ii) an outlier loci approach, and iii) a canonical correlation analysis on differentially sequenced bins. A linkage disequilibrium-corrected Bonferroni method was applied to filter associations. The two association methods jointly identified a set of 15 genes significantly related to environmental adaptation. The outlier loci approach revealed that 5.7% of the loci analysed were under selection. The canonical correlation analysis showed that the distribution of some differentially sequenced regions was associated to environmental variation. CONCLUSIONS: We show that the multi-faceted approach used here targeted different components of B. distachyon adaptive variation, and may lead to the discovery of genes related to environmental adaptation in natural populations. Its application to a model species with a fully sequenced genome is a modular strategy that enables the stratification of biological material and thus improves our knowledge of the functional loci determining adaptation in near-crop species. When coupled with population genetics and measures of genomic structuration, methods coming from genome wide association studies may lead to the exploitation of model species as natural probes to identify loci related to environmental adaptation.
Assuntos
Adaptação Fisiológica/genética , Brachypodium/genética , Brachypodium/fisiologia , Meio Ambiente , Genômica , Técnicas de Genotipagem , Análise de Sequência , Genes de Plantas/genética , Loci Gênicos/genética , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Simple Sequence Repeats (SSRs) derived from Expressed Sequence Tags (ESTs) belong to the expressed fraction of the genome and are important for gene regulation, recombination, DNA replication, cell cycle and mismatch repair. Here, we present a comparative analysis of the SSR motif distribution in the 5'UTR, ORF and 3'UTR fractions of ESTs across selected genera of woody trees representing gymnosperms (17 species from seven genera) and angiosperms (40 species from eight genera). RESULTS: Our analysis supports a modest contribution of EST-SSR length to genome size in gymnosperms, while EST-SSR density was not associated with genome size in neither angiosperms nor gymnosperms. Multiple factors seem to have contributed to the lower abundance of EST-SSRs in gymnosperms that has resulted in a non-linear relationship with genome size diversity. The AG/CT motif was found to be the most abundant in SSRs of both angiosperms and gymnosperms, with a relative increase in AT/AT in the latter. Our data also reveals a higher abundance of hexamers across the gymnosperm genera. CONCLUSIONS: Our analysis provides the foundation for future comparative studies at the species level to unravel the evolutionary processes that control the SSR genesis and divergence between angiosperm and gymnosperm tree species.
Assuntos
Cycadopsida/genética , Etiquetas de Sequências Expressas , Magnoliopsida/genética , Repetições de Microssatélites/genética , Árvores/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Proteínas de Plantas/genéticaRESUMO
BACKGROUND: A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. RESULTS: Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. CONCLUSION: Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles.
Assuntos
Genes de Plantas , Íntrons/genética , Picea/genética , Sequência de Bases , Bases de Dados Genéticas , Evolução Molecular , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Pinus/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido NucleicoRESUMO
We report a whole-genome comparison of gene content in allelic BAC contigs from two maize inbred lines. Genic content polymorphisms involve as many as 10,000 sequences and are mainly generated by DNA insertions. The termini of eight of the nine genic insertions that we analyzed shared the structural hallmarks of helitron rolling-circle transposons. DNA segments defined by helitron termini contained multiple gene-derived fragments and had a structure typical of nonautonomous helitron-like transposons. Closely related insertions were found in multiple genomic locations. Some of these produced transcripts containing segments of different genes, supporting the idea that these transposition events have a role in exon shuffling and the evolution of new proteins. We identified putative autonomous helitron elements and found evidence for their transcription. Helitrons in maize seem to continually produce new nonautonomous elements responsible for the duplicative insertion of gene segments into new locations and for the unprecedented genic diversity. The maize genome is in constant flux, as transposable elements continue to change both the genic and nongenic fractions of the genome, profoundly affecting genetic diversity.
Assuntos
Elementos de DNA Transponíveis/genética , Éxons/genética , Duplicação Gênica , Variação Genética , Zea mays/genética , Sequência de Bases , DNA de Plantas/química , Genes de Plantas/genética , Genoma de Planta , Dados de Sequência Molecular , Especificidade da EspécieRESUMO
Sustainable agriculture requires locally adapted varieties that produce nutritious food with limited agricultural inputs. Genome engineering represents a viable approach to develop cultivars that fulfill these criteria. For example, the red Hassawi rice, a native landrace of Saudi Arabia, tolerates local drought and high-salinity conditions and produces grain with diverse health-promoting phytochemicals. However, Hassawi has a long growth cycle, high cultivation costs, low productivity, and susceptibility to lodging. Here, to improve these undesirable traits via genome editing, we established efficient regeneration and Agrobacterium-mediated transformation protocols for Hassawi. In addition, we generated the first high-quality reference genome and targeted the key flowering repressor gene, Hd4, thus shortening the plant's lifecycle and height. Using CRISPR/Cas9 multiplexing, we simultaneously disrupted negative regulators of flowering time (Hd2, Hd4, and Hd5), grain size (GS3), grain number (GN1a), and plant height (Sd1). The resulting homozygous mutant lines flowered extremely early (â¼56 days) and had shorter stems (approximately 107 cm), longer grains (by 5.1%), and more grains per plant (by 50.2%), thereby enhancing overall productivity. Furthermore, the awns of grains were 86.4% shorter compared to unedited plants. Moreover, the modified rice grain displayed improved nutritional attributes. As a result, the modified Hassawi rice combines several desirable traits that can incentivize large-scale cultivation and reduce malnutrition.
Assuntos
Oryza , Oryza/genética , Edição de Genes , Fenótipo , Agricultura , Sistemas CRISPR-CasRESUMO
The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.
Assuntos
Genoma de Planta , Lactonas , Pennisetum , Striga , Striga/genética , Lactonas/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Resistência à Doença/genética , Reguladores de Crescimento de Plantas/metabolismoRESUMO
High-quality genome assemblies are characterized by high-sequence contiguity, completeness, and a low error rate, thus providing the basis for a wide array of studies focusing on natural species ecology, conservation, evolution, and population genomics. To provide this valuable resource for conservation projects and comparative genomics studies on gyrfalcon (Falco rusticolus), we sequenced and assembled the genome of this species using third-generation sequencing strategies and optical maps. Here, we describe a highly contiguous and complete genome assembly comprising 20 scaffolds and 13 contigs with a total size of 1.193 Gbp, including 8,064 complete Benchmarking Universal Single-Copy Orthologs (BUSCOs) of the total 8,338 BUSCO groups present in the library aves_odb10. Of these BUSCO genes, 96.7% were complete, 96.1% were present as a single copy, and 0.6% were duplicated. Furthermore, 0.8% of BUSCO genes were fragmented and 2.5% (210) were missing. A de novo search for transposable elements (TEs) identified 5,716 TEs that masked 7.61% of the F. rusticolus genome assembly when combined with publicly available TE collections. Long interspersed nuclear elements, in particular, the element Chicken-repeat 1 (CR1), were the most abundant TEs in the F. rusticolus genome. A de novo first-pass gene annotation was performed using 293,349 PacBio Iso-Seq transcripts and 496,195 transcripts derived from the assembly of 42,429,525 Illumina PE RNA-seq reads. In all, 19,602 putative genes, of which 59.31% were functionally characterized and associated with Gene Ontology terms, were annotated. A comparison of the gyrfalcon genome assembly with the publicly available assemblies of the domestic chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and hummingbird (Calypte anna) revealed several genome rearrangements. In particular, nine putative chromosome fusions were identified in the gyrfalcon genome assembly compared with those in the G. gallus genome assembly. This genome assembly, its annotation for TEs and genes, and the comparative analyses presented, complement and strength the base of high-quality genome assemblies and associated resources available for comparative studies focusing on the evolution, ecology, and conservation of Aves.
Assuntos
Cromossomos , Genômica , Anotação de Sequência Molecular , Elementos de DNA TransponíveisRESUMO
Pigmented rice (Oryza sativa L.) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.