Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 76(7-8): 647-655, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-38071631

RESUMO

The discovery of novel antibacterials devoid of cross resistance is of utmost importance. At the same time, biological pathways and processes suitable to be targeted are limited. At Actelion Pharmaceuticals we decided to work on novel bacterial topoisomerase inhibitors (NBTI) to discover new antibiotics with broad spectrum activity and limited resistance development for use against severe hospital infections. This paper summarizes the learnings and results of our efforts in the field, which led to the discovery of multiple chemical classes with potent Gram-negative activity and ultimately to the selection of several compounds that underwent preclinical profiling.

2.
Chimia (Aarau) ; 75(3): 225-226, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766210
3.
ChemMedChem ; 19(2): e202300606, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983645

RESUMO

Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.


Assuntos
Dinoprostona , Neoplasias , Humanos , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4
5.
ChemMedChem ; 16(5): 891-897, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33236408

RESUMO

Ribosomal protein synthesis is an important target in antibacterial drug discovery. Numerous natural products have served as starting points for the development of antibiotics. We report here the total synthesis of xenocoumacin 1, a natural product that binds to 16S ribosomal RNA at a highly conserved region, as well as analogues thereof. Preliminary structure-activity relationship studies were aimed at understanding and modulating the selectivity between eukaryotic and prokaryotic ribosomes. Modifications were mainly tolerated in the aromatic region. Whole-cell activity against Gram-negative bacteria is limited by efflux and penetration, as demonstrated in genetically modified strains of E. coli. Analogues with high selectivity for eukaryotic ribosomes were identified, but it was not possible to obtain inhibitors selective for bacterial protein synthesis. Achieving high selectivity (albeit not the desired one) was thus possible despite the high homology between eukaryotic and prokaryotic ribosomes in the binding region.


Assuntos
Antibacterianos/farmacologia , Benzopiranos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas Ribossômicas/antagonistas & inibidores , Antibacterianos/química , Benzopiranos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Proteínas Ribossômicas/biossíntese , Relação Estrutura-Atividade
6.
Chemistry ; 14(34): 10683-704, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18821532

RESUMO

We describe in full the first synthesis of the potent insect antifeedant azadirachtin through a highly convergent approach. An O-alkylation reaction is used to unite decalin ketone and propargylic mesylate fragments, after which a Claisen rearrangement constructs the central C8-C14 bond in a stereoselective fashion. The allene which results from this sequence then enables a second critical carbon-carbon bond forming event whereby the [3.2.1] bicyclic system, present in the natural product, is generated via a 5-exo-radical cyclisation process. Finally, using knowledge gained through our early studies into the reactivity of the natural product, a series of carefully designed steps completes the synthesis of this challenging molecule.


Assuntos
Inseticidas/síntese química , Limoninas/síntese química , Inseticidas/química , Limoninas/química , Conformação Molecular , Estereoisomerismo
7.
Bioorg Med Chem Lett ; 18(21): 5729-33, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845436

RESUMO

A series of dual OX(1)R/OX(2)R orexin antagonists was prepared based on a N-glycine-sulfonamide core. SAR studies of a screening hit led to compounds with low nanomolar affinity for both receptors and good oral bioavailability. One of these compounds, 47, has demonstrated in vivo activity in rats following oral administration.


Assuntos
Glicina/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Disponibilidade Biológica , Barreira Hematoencefálica , Glicina/química , Glicina/farmacocinética , Masculino , Receptores de Orexina , Ratos , Ratos Wistar , Sulfonamidas/química , Sulfonamidas/farmacocinética
8.
J Med Chem ; 60(9): 3776-3794, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28406300

RESUMO

There is an urgent unmet medical need for novel antibiotics that are effective against a broad range of bacterial species, especially multidrug resistant ones. Tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent activity against Gram-positive pathogens and no target-mediated cross-resistance with fluoroquinolones. We report our research efforts aimed at expanding the antibacterial spectrum of this class of molecules toward difficult-to-treat Gram-negative pathogens. Physicochemical properties (polarity and basicity) were considered to guide the design process. Dibasic tetrahydropyran-based compounds such as 6 and 21 are potent inhibitors of both DNA gyrase and topoisomerase IV, displaying antibacterial activities against Gram-positive and Gram-negative pathogens (Staphylococcus aureus, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii). Compounds 6 and 21 are efficacious in clinically relevant murine infection models.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Piranos/farmacologia , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/farmacologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/síntese química , Cobaias , Humanos , Testes de Sensibilidade Microbiana , Miócitos Cardíacos/efeitos dos fármacos , Piranos/efeitos adversos , Piranos/síntese química , Inibidores da Topoisomerase/efeitos adversos
9.
J Med Chem ; 58(2): 927-42, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25494934

RESUMO

Novel antibacterial drugs that are effective against infections caused by multidrug resistant pathogens are urgently needed. In a previous report, we have shown that tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. During the course of our optimization program, lead compound 5 was deprioritized due to adverse findings in cardiovascular safety studies. In the effort of mitigating these findings and optimizing further the pharmacological profile of this class of compounds, we have identified a subseries of tetrahydropyran-based molecules that are potent DNA gyrase and topoisomerase IV inhibitors and display excellent antibacterial activity against Gram positive pathogens, including clinically relevant resistant isolates. One representative of this class, compound 32d, elicited only weak inhibition of hERG K(+) channels and hNaV1.5 Na(+) channels, and no effects were observed on cardiovascular parameters in anesthetized guinea pigs. In vivo efficacy in animal infection models has been demonstrated against Staphylococcus aureus and Streptococcus pneumoniae strains.


Assuntos
Antibacterianos/síntese química , Bactérias Gram-Positivas/efeitos dos fármacos , Piranos/síntese química , Inibidores da Topoisomerase II/síntese química , Animais , Antibacterianos/farmacologia , Cobaias , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Piranos/farmacologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia
10.
J Med Chem ; 56(18): 7396-415, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23968485

RESUMO

There is an urgent need for new antibacterial drugs that are effective against infections caused by multidrug-resistant pathogens. Novel nonfluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) have the potential to become such drugs because they display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. Bacterial topoisomerase inhibitors that are built on a tetrahydropyran ring linked to a bicyclic aromatic moiety through a syn-diol linker show potent anti-Gram-positive activity, covering isolates with clinically relevant resistance phenotypes. For instance, analog 49c was found to be a dual DNA gyrase-topoisomerase IV inhibitor, with broad antibacterial activity and low propensity for spontaneous resistance development, but suffered from high hERG K(+) channel block. On the other hand, analog 49e displayed lower hERG K(+) channel block while retaining potent in vitro antibacterial activity and acceptable frequency for resistance development. Furthermore, analog 49e showed moderate clearance in rat and promising in vivo efficacy against Staphylococcus aureus in a murine infection model.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , DNA Topoisomerases/metabolismo , Desenho de Fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Piranos/síntese química , Piranos/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Técnicas de Química Sintética , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases/química , Feminino , Bactérias Gram-Positivas/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Piranos/metabolismo , Piranos/farmacocinética , Ratos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/metabolismo , Inibidores da Topoisomerase/farmacocinética , Inibidores da Topoisomerase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA