RESUMO
BACKGROUND: The human small airway epithelium (SAE) plays a central role in the early events in the pathogenesis of most inherited and acquired lung disorders. Little is known about the molecular phenotypes of the specific cell populations comprising the SAE in humans, and the contribution of SAE specific cell populations to the risk for lung diseases. METHODS: Drop-seq single-cell RNA-sequencing was used to characterize the transcriptome of single cells from human SAE of nonsmokers and smokers by bronchoscopic brushing. RESULTS: Eleven distinct cell populations were identified, including major and rare epithelial cells, and immune/inflammatory cells. There was cell type-specific expression of genes relevant to the risk of the inherited pulmonary disorders, genes associated with risk of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis and (non-mutated) driver genes for lung cancers. Cigarette smoking significantly altered the cell type-specific transcriptomes and disease risk-related genes. CONCLUSIONS: This data provides new insights into the possible contribution of specific lung cells to the pathogenesis of lung disorders.
Assuntos
Fumar Cigarros/genética , Testes Genéticos/métodos , Pneumopatias/genética , Mucosa Respiratória/fisiologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Remodelação das Vias Aéreas/genética , Broncoscopia/métodos , Fumar Cigarros/efeitos adversos , Expressão Gênica , Humanos , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/patologiaRESUMO
Airway remodelling in chronic obstructive pulmonary disease (COPD) originates, in part, from smoking-induced changes in airway basal stem/progenitor cells (BCs). Based on the knowledge that bone morphogenetic protein 4 (BMP4) influences epithelial progenitor function in the developing and adult mouse lung, we hypothesised that BMP4 signalling may regulate the biology of adult human airway BCs relevant to COPD.BMP4 signalling components in human airway epithelium were analysed at the mRNA and protein levels, and the differentiation of BCs was assessed using the BC expansion and air-liquid interface models in the absence/presence of BMP4, BMP receptor inhibitor and/or small interfering RNAs against BMP receptors and downstream signalling.The data demonstrate that in cigarette smokers, BMP4 is upregulated in ciliated and intermediate undifferentiated cells, and expression of the BMP4 receptor BMPR1A is enriched in BCs. BMP4 induced BCs to acquire a smoking-related abnormal phenotype in vitro mediated by BMPR1A/Smad signalling, characterised by decreased capacity to differentiate into normal mucociliary epithelium, while generating squamous metaplasia.Exaggerated BMP4 signalling promotes cigarette smoking-relevant airway epithelial remodelling by inducing abnormal phenotypes in human airway BCs. Targeting of BMP4 signalling in airway BCs may represent a novel target to prevent/treat COPD-associated airway disease.
Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fumar Cigarros/metabolismo , Epitélio/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Células-Tronco/patologia , Adulto , Idoso , Remodelação das Vias Aéreas , Proteína Morfogenética Óssea 4/genética , Estudos de Casos e Controles , Diferenciação Celular , Fumar Cigarros/patologia , Epitélio/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Adulto JovemRESUMO
RATIONALE: Little is known about human club cells, dome-shaped cells with dense cytoplasmic granules and microvilli that represent the major secretory cells of the human small airways (at least sixth-generation bronchi). OBJECTIVES: To define the ontogeny and biology of the human small airway epithelium club cell. METHODS: The small airway epithelium was sampled from the normal human lung by bronchoscopy and brushing. Single-cell transcriptome analysis and air-liquid interface culture were used to assess club cell ontogeny and biology. MEASUREMENTS AND MAIN RESULTS: We identified the club cell population by unbiased clustering using single-cell transcriptome sequencing. Principal component gradient analysis uncovered an ontologic link between KRT5 (keratin 5)+ basal cells and SCGB1A1 (secretoglobin family 1A member 1)+ club cells, a hypothesis verified by demonstrating in vitro that a pure population of human KRT5+ SCGB1A1- small airway epithelial basal cells differentiate into SCGB1A1+KRT5- club cells on air-liquid interface culture. Using SCGB1A1 as the marker of club cells, the single-cell analysis identified novel roles for these cells in host defense, xenobiotic metabolism, antiprotease, physical barrier function, monogenic lung disorders, and receptors for human viruses. CONCLUSIONS: These observations provide novel insights into the molecular phenotype and biologic functions of the human club cell population and identify basal cells as the human progenitor cells for club cells.
Assuntos
Brônquios/metabolismo , Brônquios/fisiologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Mucosa Respiratória/metabolismo , Transcriptoma/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Técnicas In Vitro , Análise de Componente Principal , Valores de ReferênciaRESUMO
The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. Stem Cells 2017;35:824-837.
Assuntos
Anfirregulina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mucosa Respiratória/patologia , Fumar/efeitos adversos , Células-Tronco/patologia , Adulto , Remodelação das Vias Aéreas , Diferenciação Celular , Proliferação de Células , Cílios/metabolismo , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Humanos , Hiperplasia , Masculino , Células-Tronco/metabolismo , Regulação para CimaRESUMO
In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.
Assuntos
Regulação da Expressão Gênica , Imunidade/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Transativadores/genética , Transativadores/metabolismo , Diferenciação Celular , Análise por Conglomerados , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Mucosa Respiratória/citologia , Fumar/efeitos adversosRESUMO
RATIONALE: Small airways are the primary site of pathologic changes in chronic obstructive pulmonary disease (COPD), the major smoking-induced lung disorder. OBJECTIVES: On the basis of the concept of proximal-distal patterning that determines regional specialization of the airway epithelium during lung development, we hypothesized that a similar program operates in the adult human lung being altered by smoking, leading to decreased regional identity of the small airway epithelium (SAE). METHODS: The proximal and distal airway signatures were identified by comparing the transcriptomes of large and small airway epithelium samples obtained by bronchoscopy from healthy nonsmokers. The expression of these signatures was evaluated in the SAE of healthy smokers and smokers with COPD compared with that of healthy nonsmokers. The capacity of airway basal stem cells (BCs) to maintain region-associated phenotypes was evaluated using the air-liquid interface model. MEASUREMENTS AND MAIN RESULTS: The distal and proximal airway signatures, containing 134 and 233 genes, respectively, were identified. These signatures included known developmental regulators of airway patterning, as well as novel regulators such as epidermal growth factor receptor, which was associated with the proximal airway phenotype. In the SAE of smokers with COPD, there was a dramatic smoking-dependent loss of the regional transcriptome identity with concomitant proximalization. This repatterning phenotype was reproduced by stimulating SAE BCs with epidermal growth factor, which was up-regulated in the SAE of smokers, during differentiation of SAE BCs in vitro. CONCLUSIONS: Smoking-induced global distal-to-proximal reprogramming of the SAE represents a novel pathologic feature of COPD and is mediated by exaggerated epidermal growth factor/epidermal growth factor receptor signaling in SAE BCs.
Assuntos
Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/fisiopatologia , Adulto , Epitélio/fisiopatologia , Feminino , Humanos , MasculinoRESUMO
Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17ß-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca2+ release from the endoplasmic reticulum, increased the mitochondrial Ca2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP3) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis.
Assuntos
Apoptose/efeitos dos fármacos , Estrogênios/farmacologia , Próstata/efeitos dos fármacos , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/patologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Benzodioxóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Próstata/citologia , Hiperplasia Prostática/metabolismo , Quinolinas/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-AtividadeRESUMO
The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function.
Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Mucosa Respiratória/patologia , Fumar/efeitos adversos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Imunofluorescência , Humanos , Imuno-Histoquímica , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
CXCL14, a recently described epithelial cytokine, plays putative multiple roles in inflammation and carcinogenesis. In the context that chronic obstructive pulmonary disease (COPD) and lung cancer are both smoking-related disorders associated with airway epithelial disorder and inflammation, we hypothesized that the airway epithelium responds to cigarette smoking with altered CXCL14 gene expression, contributing to the disease-relevant phenotype. Using genome-wide microarrays with subsequent immunohistochemical analysis, the data demonstrate that the expression of CXCL14 is up-regulated in the airway epithelium of healthy smokers and further increased in COPD smokers, especially within hyperplastic/metaplastic lesions, in association with multiple genes relevant to epithelial structural integrity and cancer. In vitro experiments revealed that the expression of CXCL14 is induced in the differentiated airway epithelium by cigarette smoke extract, and that epidermal growth factor mediates CXCL14 up-regulation in the airway epithelium through its effects on the basal stem/progenitor cell population. Analyses of two independent lung cancer cohorts revealed a dramatic up-regulation of CXCL14 expression in adenocarcinoma and squamous-cell carcinoma. High expression of the COPD-associated CXCL14-correlating cluster of genes was linked in lung adenocarcinoma with poor survival. These data suggest that the smoking-induced expression of CXCL14 in the airway epithelium represents a novel potential molecular link between smoking-associated airway epithelial injury, COPD, and lung cancer.
Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Quimiocinas CXC/genética , Misturas Complexas/farmacologia , Neoplasias Pulmonares/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Adenocarcinoma/etiologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Quimiocinas CXC/agonistas , Quimiocinas CXC/imunologia , Misturas Complexas/isolamento & purificação , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/mortalidade , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Análise de SobrevidaRESUMO
Store-operated calcium entry (SOCE) is essential for many cellular processes. In this study, we investigated modulation of SOCE by tyrosine phosphorylation in rat epididymal basal cells. The intracellular Ca(2+) ([Ca(2+)]i) measurement showed that SOCE occurred in rat epididymal basal cells by pretreating the cells with thapsigargin (Tg), the inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPase. To identify the role of Ca(2+) channels in this response, we examined the effects of transient receptor potential canonical channel blockers 2-aminoethoxydiphenyl borate (2-APB), 1-[ß-[3-(4-methoxyphenyl)pro-poxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride(SKF96365), Gd(3+), and non-selective cation channel blocker Ni(2+) respectively on SOCE and found that these blockers could inhibit the Ca(2+) influx to different extent. Furthermore, we studied the regulation of SOCE by tyrosine kinase pathway. The inhibitor of tyrosine kinase genistein remarkably suppressed the SOCE response, whereas sodium orthovanadate, the inhibitor of tyrosine phosphatase, greatly enhanced it. The results suggest that tyrosine kinase pathway plays a significant role in the initiation of SOCE and positively modulates SOCE in epididymal basal cells.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Epididimo/citologia , Epididimo/metabolismo , Fosfotirosina/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Epididimo/efeitos dos fármacos , Epididimo/enzimologia , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Tapsigargina/farmacologia , Vanadatos/farmacologiaRESUMO
Capitalizing on liver tropism of adeno-associated viral (AAV) vectors, intravenous vector administration is commonly used to genetically modify hepatocytes, a strategy currently in clinical trials for a number of liver-based hereditary disorders. Although hepatocytes are known to exhibit extensive phenotypic heterogeneity influenced by liver zonation and dietary cycle, there is little data available for the tropism capacity, as well as the potential transcriptional dysregulation, of AAV vectors for specific liver cell types. To assess these issues, we employed single-cell RNA sequencing of the mouse liver after intravenous administration of the liver tropic AAVrh.10 vector to characterize cell-specific AAV-mediated transgene expression and transcriptome dysregulation. Wild-type 8-week-old male C57Bl/6 mice under normal feed cycle were randomly divided into three groups and intravenously administered phosphate-buffered saline (PBS), AAVrh.10Null (no transgene), or AAVrh.10mCherry (marker gene). Overall, a total of 46,500 liver cells were sequenced. The single-cell transcriptomic profiles were grouped into three separate clusters of hepatocytes (Ttr-enriched "Hep1," Tat-enriched "Hep2," and Alb-enriched "Hep3") and multiple other cell types. The hepatocyte diversity was driven by glucose and lipid homeostasis signaling. Assessment of the transgene expression demonstrated that AAVrh.10 is primarily Hep1-tropic, with a 10-gene signature positively correlated with AAVrh.10-mediated transgene expression. The transgene expression was less in Hep2 and Hep3 cells with a high receptor tyrosine kinase phenotype. Importantly, AAVrh.10 vector interactions with the liver markedly altered the transcriptional patterns of all cell types, with modified genes enriched in pathways of complement and coagulation cascade, cytochrome P450, peroxisome, antigen processing and presentation, and endoplasmic reticulum protein processing. These observations provide insights into the liver cell-specific consequences of AAV-mediated liver gene transfer, far beyond the well-known organ-specific expression of the vector-delivered transgene.
Assuntos
Dependovirus/genética , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Transcriptoma , Tropismo Viral , Administração Intravenosa , Animais , Células Cultivadas , Dependovirus/fisiologia , Perfilação da Expressão Gênica , Terapia Genética , Vetores Genéticos , Humanos , Fígado/virologia , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Transdução Genética , Transgenes , Proteína Vermelha FluorescenteRESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic fibrotic lung disease with an irreversible decline of lung function. "Bronchiolization", characterized by ectopic appearance of airway epithelial cells in the alveolar regions, is one of the characteristic features in the IPF lung. Based on the knowledge that club cells are the major epithelial secretory cells in human small airways, and their major secretory product uteroglobin (SCGB1A1) is significantly increased in both serum and epithelial lining fluid of IPF lung, we hypothesize that human airway club cells contribute to the pathogenesis of IPF. By assessing the transcriptomes of the single cells from human lung of control donors and IPF patients, we identified two SCGB1A1+ club cell subpopulations, highly expressing MUC5B, a significant genetic risk factor strongly associated with IPF, and SCGB3A2, a marker heterogeneously expressed in the club cells, respectively. Interestingly, the cellular proportion of SCGB1A1+MUC5B+ club cells was significantly increased in IPF patients, and this club cell subpopulation highly expressed genes related to mucous production and immune cell chemotaxis. In contrast, though the cellular proportion did not change, the molecular phenotype of the SCGB1A1+SCGB3A2high club cell subpopulation was significantly altered in IPF lung, with increased expression of mucins, cytokine and extracellular matrix genes. The single cell transcriptomic analysis reveals the cellular and molecular heterogeneity of club cells, and provide novel insights into the biological functions of club cells in the pathogenesis of IPF.
Assuntos
Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Transcriptoma , Bronquíolos/citologia , Bronquíolos/patologia , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Secretoglobinas/genética , Análise de Célula Única , Uteroglobina/genéticaRESUMO
Recent studies suggest that the epithelium might modulate the contractility of smooth muscle. However, the mechanisms underlying this regulation are unknown. The present study investigated the regulation of smooth muscle contraction by the epithelium in rat vas deferens and the possible factor(s) involved. Exogenously applied ATP inhibited electrical field stimulation (EFS)-evoked smooth muscle contraction in an epithelium-dependent manner. As the effects of ATP on smooth muscle contractility were abrogated by inhibitors of prostaglandin synthesis, but not by those of nitric oxide synthesis, prostaglandins might mediate the effects of ATP. Consistent with this idea, PGE(2) inhibited EFS-evoked smooth muscle contraction independent of the epithelium, while ATP and UTP induced the release of PGE(2) from cultured rat vas deferens epithelial cells, but not smooth muscle cells. The ATP-induced PGE(2) release from vas deferens epithelial cells was abolished by U73122, an inhibitor of phospholipase C (PLC) and BAPTA AM, a Ca(2+) chelator. ATP also transiently increased [Ca(2+)](i) in vas deferens epithelial cells. This effect of ATP on [Ca(2+)](i) was independent of extracellular Ca(2+), but abolished by the P2 receptor antagonist RB2 and U73122. In membrane potential measurements using a voltage-sensitive dye, PGE(2), but not ATP, hyperpolarized vas deferens smooth muscle cells and this effect of PGE(2) was blocked by MDL12330A, an adenylate cyclase inhibitor, and the chromanol 293B, a blocker of cAMP-dependent K(+) channels. Taken together, our results suggest that ATP inhibition of vas deferens smooth muscle contraction is epithelium dependent. The data also suggest that ATP activates P2Y receptor-coupled Ca(2+) mobilization leading to the release of PGE(2) from epithelial cells, which in turn activates cAMP-dependent K(+) channels in smooth muscle cells leading to the hyperpolarization of membrane voltage and the inhibition of vas deferens contraction. Thus, the present findings suggest a novel regulatory mechanism by which the epithelium regulates the contractility of smooth muscle.
Assuntos
Trifosfato de Adenosina/administração & dosagem , Cálcio/metabolismo , Dinoprostona/metabolismo , Epitélio/metabolismo , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Ducto Deferente/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Epitélio/efeitos dos fármacos , Retroalimentação/efeitos dos fármacos , Retroalimentação/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Ducto Deferente/efeitos dos fármacosRESUMO
In addition to its well established role as a neurotransmitter, extracellular ATP has been considered as a paracrine/autocrine factor, either released from sperm or epithelial cells, in the male reproductive tract and shown to play a versatile role in modulating various reproductive functions. This review summarizes the signal pathways through which ATP induces anion secretion by the epithelia of the epididymis, as well as its epithelium-dependent modulation of smooth muscle contraction of the vas deferens. Finally, the overall role of ATP in coordinating various reproductive events in the male genital tract is discussed.
Assuntos
Trifosfato de Adenosina/fisiologia , Transdução de Sinais , Sistema Urogenital/fisiologia , Animais , Epididimo/fisiologia , Epitélio/fisiologia , Humanos , Masculino , Contração Muscular , Músculo Liso/fisiologia , Ducto Deferente/fisiologiaRESUMO
BACKGROUND: The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. METHOD/PRINCIPAL FINDINGS: Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. CONCLUSIONS: The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.
Assuntos
Bicarbonatos/metabolismo , Epididimo/metabolismo , Epitélio/metabolismo , Espaço Intracelular/metabolismo , Sódio/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácidos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Simportadores de Sódio-Bicarbonato/metabolismoRESUMO
OBJECTIVE: To explore the functional role of vacuolar H(+)-ATPase in the pH regulation of epididymal fluid and its effect on sperm motility. DESIGN: Experimental study. SETTING: Physiology laboratory in a university. ANIMAL(S): Immature male Sprague-Dawley rats. INTERVENTION(S): The H(+)-ATPase inhibitor was applied to the primary culture of epididymal cells. MAIN OUTCOME MEASURE(S): The intracellular luminal fluid pH and sperm percent motility were recorded. RESULT(S): Double immunofluorescence of H(+)-ATPase and carbonic anhydrase II in primary culture of cauda epididymal epithelial cells showed that the system was a suitable model for investigation of acid secretion by clear cells. Clear cells were pharmacologically distinct from principal cells in acid/base transportation. The intracellular pH recovery from cellular acidification was suppressed by the H(+)-ATPase inhibitor bafilomycin A1(100 nM) and the Na(+)/H(+) exchanger inhibitor amiloride (1 mM) by 85% and 54%, respectively. These results suggest that, in addition to Na(+)/H(+) exchanger, clear cells actively pump proton from cytoplasm into extracellular space through H(+)-ATPase. In addition, inhibition of H(+)-ATPase by bafilomycin A1 blocked the acidification of luminal fluid with IC(50) values of 12 nM, which supports that H(+)-ATPase acidifies the luminal fluid. We also confirm that the acid fluid regulates rat cauda sperm motility. CONCLUSION(S): The present work shows that clear cells, the minority cell type of epididymal cell population, play an important role in the pH regulation of epididymal fluid by H(+)-ATPase.
Assuntos
Epididimo/citologia , ATPases Translocadoras de Prótons/metabolismo , Amilorida/farmacologia , Animais , Anidrase Carbônica II/metabolismo , Epididimo/metabolismo , Concentração de Íons de Hidrogênio , Líquido Intracelular/metabolismo , Macrolídeos , Masculino , Ratos , Ratos Sprague-Dawley , Trocadores de Sódio-Hidrogênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacosRESUMO
Sodium-hydrogen exchanger as a channel for regulation of intracellular pH might be a crucial modulator of sperm capacitation and motility. Three members of this family have been identified in spermatozoa. A novel protein testis-specific sodium-hydrogen exchanger named mtsNHE was cloned in the present study. The mtsNHE localizing on principle piece of sperm flagellum contained 12 predicted transmembrane regions without cytoplasmic fragment at carboxyl terminus. Hydrophilic region was common in the sodium-hydrogen exchanger family members. Polyclonal antibodies to trans-membrane region significantly reduced sperm motility, acrosome reaction and ratio of in vitro fertilization. By in-pouring the antibodies in sperm solution, intracellular pH and calcium concentration were decreased. Muscle injection of female mice with the specific gene vaccine of mtsNHE, significantly stepped down fertility rate. Considering its specific expression and involvement in the regulation of fertility, the mtsNHE might be a potential target molecule for developing a new male contraceptive.
Assuntos
Fertilidade/fisiologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Testículo/metabolismo , Análise de Variância , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Cálcio/metabolismo , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Fertilidade/imunologia , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Dados de Sequência Molecular , Coelhos , Análise de Sequência de DNARESUMO
The present study investigated the effects of dopamine on chloride transport across cultured rat caudal epididymal epithelium. The results showed that dopamine induced a biphasic short-circuit current (Isc) in a concentration-dependent manner. The dopamine-induced response consisted of an initial rapid spike followed by a sustained phase. The alpha and beta adrenoreceptor inhibitors, phentolamine and propranolol, inhibited the initial spike and the sustained phase, respectively, suggesting a contribution of adrenergic receptors. The response was almost abolished by removing the extracellular Cl-, suggesting that the dopamine-induced short-circuit current is primarily a Cl- current. The response was inhibited by the apical Cl- channel blocker, diphenylamine-dicarboxylic acid, and the Ca2+-activated Cl- channel blocker, disulfonic acid stilbene, indicating that Cl- may pass through two types of Cl- channels on the apical side. Preloading monolayers with the intracellular Ca2+ chelator BAPTA/AM abolished the initial spike and greatly reduced the second phase in the Isc response to dopamine. Pretreating the monolayers with an adenylate cyclase inhibitor, MDL12330A, inhibited all of the second Isc response and part of the initial spike. Also, characteristics of the Cl- currents induced by dopamine were observed in whole-cell patch-clamp recording. The increases of intracellular cAMP and Ca2+ induced by dopamine were also measured. The results suggest that extracellular dopamine activates Ca2+-dependent and cAMP-dependent regulatory pathways, leading to activation of both Ca2+-dependent and cAMP-dependent Cl- conductances in epididymal epithelial cells.
Assuntos
Canais de Cloreto/metabolismo , Dopamina/farmacologia , Epididimo/efeitos dos fármacos , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Antagonistas Adrenérgicos/farmacologia , Animais , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Inibidores Enzimáticos/farmacologia , Epididimo/metabolismo , Iminas/farmacologia , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Fentolamina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , ortoaminobenzoatos/farmacologiaRESUMO
The aim of our present study was to investigate the short-circuit current response to carbachol in cultured rat cauda epididymal epithelia and the signal transduction mechanisms involved. Carbachol added basolaterally induced a concentration-dependent increase in short-circuit current (Isc) across the epididymal epithelium consisting of a rapidly rising phase and a long term sustained response. The response was almost abolished by removing Cl(-) from the extracellular medium and blockable by pretreating the tissues with DPC, indicating a substantial contribution of Cl(-) secretion to the carbachol-induced response. The muscarinic acetylcholine receptor antagonist atropine inhibited the response, but the nicotinic acetylcholine receptors antagonist curarine had no effect, suggesting that only the muscarinic acetylcholine receptors mediated the secretory response of the basolateral side of rat cauda epididymal epithelium to carbachol. Addition of carbachol to the apical side of the tissue was found not to elicit an Isc response. These results suggested that muscarinic receptors are present in the basolateral side of rat cauda epididymal epithelium. Activation of these receptors by acetylcholine released from the nerve endings regulates epididymal transepithelial Cl(-) secretion. Cholinergic stimulation therefore contributes to the formation of luminal fluid microenvironment.
Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Epididimo/metabolismo , Receptores Muscarínicos/metabolismo , Transdução de Sinais , Animais , Carbacol/farmacologia , Canais de Cloreto/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Masculino , Agonistas Muscarínicos/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
Neurotransmitter-controlled Cl- secretions play an important role in maintenance of the epididymal microenvironment for sperm maturation. This study was carried out to investigate the effect of carbachol (CCH) on the cultured rat epididymal epithelium and the signal transduction mechanisms of this response. In normal K-H solution, CCH added basolaterally elicited a biphasic Isc response consisting of a transient spike followed by a second sustained response. Ca2+ activated Cl- channel blocker disulfonic acid stilbene (DIDS, 300 microM) only inhibited part of the CCH-induced Isc response, while nonselective Cl- channel blocker diphenylamine-dicarboxylic acid (DPC, 1 mM) reduced all, indicating the involvement of different conductance pathways. Both peaks of the CCH-induced Isc response could be significantly inhibited by pretreatment with an adenylate cyclase inhibitor, MDL12330A (50 microM). An increase in intracellular cAMP content upon stimulation of CCH was measured. All of the initial peak and part of the second peak could be inhibited by pretreatment with Ca2+-chelating agent BAPTA/AM (50 microM) and an endoplasmic reticulum Ca2+ pump inhibitor, Thapsigagin (Tg, 1 microM). In a whole-cell patch clamp experiment, CCH induced an inward current in the single cell. Two different profiles of currents were found; the first component current exhibited an outward rectifying I-V relationship in a time and voltage-dependent manner, and the current followed showed a linear I-V relationship. The carbachol-induced current was found to be partially blockable by DIDS and could be completely blocked by DPC. The above results indicate that the CCH-induced Cl- secretion could be mediated by Ca2+ and cAMP-dependent regulatory pathways.