Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298196

RESUMO

Deep learning has become an essential technique in image steganography. Most of the current deep-learning-based steganographic methods process digital images in the spatial domain. There are problems such as limited embedding capacity and unsatisfactory visual quality. To improve capacity-distortion performance, we develop a steganographic method from the frequency-domain perspective. We propose a module called the adaptive frequency-domain channel attention network (AFcaNet), which makes full use of the frequency features in each channel by a fine-grained manner of assigning weights. We apply this module to the state-of-the-art SteganoGAN, forming an Adaptive Frequency High-capacity Steganography Generative Adversarial Network (AFHS-GAN). The proposed neural network enhances the ability of high-dimensional feature extraction through overlaying densely connected convolutional blocks. In addition to this, a low-frequency loss function is introduced as an evaluation metric to guide the training of the network and thus reduces the modification of low-frequency regions of the image. Experimental results on the Div2K dataset show that our method has a better generalization capability compared to the SteganoGAN, with substantial improvement in both embedding capacity and stego-image quality. Furthermore, the embedding distribution of our method in the DCT domain is more similar to that of the traditional method, which is consistent with the prior knowledge of image steganography.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA