Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 195, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832518

RESUMO

BACKGROUND: Triatomine bugs, the vectors of Chagas disease, associate with vertebrate hosts in highly diverse ecotopes. It has been proposed that occupation of new microhabitats may trigger selection for distinct phenotypic variants in these blood-sucking bugs. Although understanding phenotypic variation is key to the study of adaptive evolution and central to phenotype-based taxonomy, the drivers of phenotypic change and diversity in triatomines remain poorly understood. METHODS/RESULTS: We combined a detailed phenotypic appraisal (including morphology and morphometrics) with mitochondrial cytb and nuclear ITS2 DNA sequence analyses to study Rhodnius ecuadoriensis populations from across the species' range. We found three major, naked-eye phenotypic variants. Southern-Andean bugs primarily from vertebrate-nest microhabitats (Ecuador/Peru) are typical, light-colored, small bugs with short heads/wings. Northern-Andean bugs from wet-forest palms (Ecuador) are dark, large bugs with long heads/wings. Finally, northern-lowland bugs primarily from dry-forest palms (Ecuador) are light-colored and medium-sized. Wing and (size-free) head shapes are similar across Ecuadorian populations, regardless of habitat or phenotype, but distinct in Peruvian bugs. Bayesian phylogenetic and multispecies-coalescent DNA sequence analyses strongly suggest that Ecuadorian and Peruvian populations are two independently evolving lineages, with little within-lineage phylogeographic structuring or differentiation. CONCLUSIONS: We report sharp naked-eye phenotypic divergence of genetically similar Ecuadorian R. ecuadoriensis (nest-dwelling southern-Andean vs palm-dwelling northern bugs; and palm-dwelling Andean vs lowland), and sharp naked-eye phenotypic similarity of typical, yet genetically distinct, southern-Andean bugs primarily from vertebrate-nest (but not palm) microhabitats. This remarkable phenotypic diversity within a single nominal species likely stems from microhabitat adaptations possibly involving predator-driven selection (yielding substrate-matching camouflage coloration) and a shift from palm-crown to vertebrate-nest microhabitats (yielding smaller bodies and shorter and stouter heads). These findings shed new light on the origins of phenotypic diversity in triatomines, warn against excess reliance on phenotype-based triatomine-bug taxonomy, and confirm the Triatominae as an informative model system for the study of phenotypic change under ecological pressure .


Assuntos
Adaptação Fisiológica , Triatominae/genética , Animais , Evolução Biológica , Ecossistema , Equador , Humanos , Insetos Vetores/anatomia & histologia , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/fisiologia , Peru , Fenótipo , Filogenia , Seleção Genética , Triatominae/anatomia & histologia , Triatominae/classificação , Triatominae/fisiologia
3.
Infect Genet Evol ; 21: 134-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24239656

RESUMO

A pseudogene, paralogous to rDNA 5.8S and ITS-2, is described in Meccus dimidiata dimidiata, M. d. capitata, M. d. maculippenis, M. d. hegneri, M. sp. aff. dimidiata, M. p. phyllosoma, M. p. longipennis, M. p. pallidipennis, M. p. picturata, M. p. mazzottii, Triatoma mexicana, Triatoma nitida and Triatoma sanguisuga, covering North America, Central America and northern South America. Such a nuclear rDNA pseudogene is very rare. In the 5.8S gene, criteria for pseudogene identification included length variability, lower GC content, mutations regarding the functional uniform sequence, and relatively high base substitutions in evolutionary conserved sites. At ITS-2 level, criteria were the shorter sequence and large proportion of insertions and deletions (indels). Pseudogenic 5.8S and ITS-2 secondary structures were different from the functional foldings, different one another, showing less negative values for minimum free energy (mfe) and centroid predictions, and lower fit between mfe, partition function, and centroid structures. A complete characterization indicated a processed pseudogenic unit of the ghost type, escaping from rDNA concerted evolution and with functionality subject to constraints instead of evolving free by neutral drift. Despite a high indel number, low mutation number and an evolutionary rate similar to the functional ITS-2, that pseudogene distinguishes different taxa and furnishes coherent phylogenetic topologies with resolution similar to the functional ITS-2. The discovery of a pseudogene in many phylogenetically related species is unique in animals and allowed for an estimation of its palaeobiogeographical origin based on molecular clock data, inheritance pathways, evolutionary rate and pattern, and geographical spread. Additional to the technical risk to be considered henceforth, this relict pseudogene, designated as "ps(5.8S+ITS-2)", proves to be a valuable marker for specimen classification, phylogenetic analyses, and systematic/taxonomic studies. It opens a new research field, Chagas disease epidemiology and control included, given its potential relationships with triatomine fitness, behaviour and adaptability.


Assuntos
Doença de Chagas/transmissão , DNA Ribossômico/genética , Genes de Insetos , Triatominae/classificação , Triatominae/genética , América , Animais , Sequência de Bases , Núcleo Celular/genética , Evolução Molecular , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Filogenia , Filogeografia , Pseudogenes , Triatominae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA