Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 44(4): 1252-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26437107

RESUMO

Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions.

2.
J Appl Microbiol ; 116(5): 1181-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24447803

RESUMO

AIM: A comprehensive understanding of the microbial community is necessary to ensure a significant reduction in pathogens during the composting process. METHODS AND RESULTS: Two biosecure, static composting systems containing cattle mortalities were constructed at subzero temperatures. Temperature at each sampling site was measured continuously and samples were grouped as either ≤50 or ≥55°C, based on temperature exposure required for effective pathogen inactivation during composting. High-throughput 454 sequencing was used to characterize the bacterial communities within each sample. Clustering of bacterial communities was observed according to temperature. However, neither richness nor diversity differed between temperature groups. Firmicutes was the most abundant phylum within both temperature groups but was more pronounced (63·6%) in samples ≥55°C (P < 0·05). Similarly, members of Clostridia, Clostridium sensu stricto (3·64%), Clostridium XI (0·59%), UF (Clostridiaceae 1) (5·29%) and UF (Clostridiales Incertae Sedis XI) (6·20%), were prominent at ≥55°C (P < 0·05), likely a reflection of spore survival and/or anaerobic microenvironments within passively aerated compost piles. Members of Thermobifida (3·54%), UO (Actinomycetales) (12·29%) and UO (Bacillales) (19·49%) were also prominent at ≥55°C (P < 0·05). CONCLUSION: Substantial spatial diversity exists within bacterial communities in field-scale compost piles. Localized temperature at the site of sampling may be one of the factors contributing to this phenomenon. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to describe the microbial community profile with the use of targeted 16S rRNA high-throughput sequencing in passively aerated composted livestock mortalities.


Assuntos
Bactérias/classificação , Microbiologia Ambiental , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Solo , Temperatura
3.
J Environ Qual ; 41(3): 845-54, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565266

RESUMO

The risk of P loss from manured soils is more related to P fractions than total P concentration in manure. This study examined the impact of manure P fractions on P losses from liquid swine manure- (LSM), solid cattle manure- (SCM), and monoammonium phosphate- (MAP) treated soils. Manure or fertilizer was applied at 50 mg P kg soil, mixed, and incubated at 20°C for 6 wk to simulate the interaction between applied P and soil when P is applied well in advance of a high risk period for runoff. Phosphorus fractions in manure were determined using the modified Hedley fractionation scheme. We used simulated rainfall (75 mm h⁻¹ for 1 h) to quantify P losses in runoff from two soils (sand and clay loam). The proportion of total labile P (total P in water+NaHCO fractions) in manure was significantly greater in LSM (70%) than SCM (44%). Mean dissolved reactive P (DRP) load in runoff over 60 min was greatest from MAP-treated soil (18.1 mg tray⁻¹), followed by LSM- (14.0 mg tray⁻¹) and SCM- (11.0 mg tray⁻¹) treated soils, all of which were greater than mean DRP load from the check (5.2 mg tray⁻¹). Total labile P (water+NaHCO) in manure was a more accurate predictor of runoff DRP loads than water extractable P, alone, for these two soils. Therefore, NaHCO extraction of manure P may be a useful tool for managing the risk of manure P runoff losses when manure is applied outside a high risk period for runoff loss.


Assuntos
Esterco/análise , Fósforo/química , Solo/química , Animais , Bovinos , Fertilizantes , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA