RESUMO
We describe a novel pair of nested genes, CDA12 and CDA13, from Tetrahymena thermophila. Both are implicated in membrane trafficking associated with cell division and conjugation. Green fluorescent protein localization reveals Cda12p decoration of diverse membrane-bound compartments, including mobile, subcortical tubulovesicular compartments; perinuclear vesicles; and candidates for recycling endosomes. Cda13p decorates intracellular foci located adjacent to cortically aligned mitochondria and their neighboring Golgi networks. The expression of antisense CDA12 RNA in transformants produces defects in cytokinesis, macronuclear segregation, and the processing of pinosomes to downstream compartments. Antisense CDA13 RNA expression produces a conjugation phenotype, resulting in the failure of mating pairs to separate, as well as failures in postconjugation cytokinesis and macronuclear fission. This study offers insight into the membrane trafficking events linking endosome and Golgi network activities, cytokinesis, and karyokinesis and the unique membrane-remodeling events that accompany conjugation in the ciliate T. thermophila. We also highlight an unusual aspect of genome organization in Tetrahymena, namely, the existence of nested, antisense genes.
Assuntos
Membrana Celular/metabolismo , Genes Inseridos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Animais , Membrana Celular/genética , Citocinese , Dados de Sequência Molecular , Transporte Proteico , Tetrahymena thermophila/citologiaRESUMO
We set out to find the "fenestrin" gene, a gene whose protein is associated with numerous cellular apertures, including the nuclear exchange junction in mating Tetrahymena thermophila. First we developed protocols for imaging and isolating intact nuclear exchange junctions from conjugating cells. Proteins from these junctions were purified using SDS-PAGE, subjected to limited proteolysis, and precise molecular weights were determined by mass spectrometry. Using Protein Prospector software and the published Tetrahymena Genome Database, genes for 15 of the most abundant proteins found in our extracts were identified. The most promising candidate was cloned by PCR, fused to yellow fluorescent protein (YFP), and placed under the control of an inducible metallothionein promoter. YFP-localization within live Tetrahymena transformants strongly suggested that one of these genes encoded the fenestrin protein, a result that was subsequently confirmed by Western blotting.
Assuntos
Núcleo Celular/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Tetrahymena/metabolismo , Animais , Western Blotting , Clonagem Molecular/métodos , Eletroforese em Gel de Poliacrilamida , Genoma de Protozoário , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetrahymena/genéticaRESUMO
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing and translation. The genome of the ciliate Tetrahymena thermophile encodes two p68-like helicases, Drh1p and Lia2p. We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised from loci dispersed throughout the genome. Strains with DRH1 deleted from the germline nuclei, which do not express the protein during post-zygotic development, fail to fragment the developing macronuclear chromosomes. IES excision still occurs in the absence of DRH1 zygotic expression; thus, Drh1p is the first protein found to be specifically required for chromosome breakage but not DNA elimination.
RESUMO
RAPD markers were used to examine the degree of genetic variation within the putatively asexual basidiomycete fungus (Lepiotaceae: provisionally named Leucoagaricus gongylophorus) associated with the leaf-cutting ant species Atta cephalotes. We analyzed fungal isolates from ant nests in two geographically distant sites, two isolates from Panama and five isolates from Trinidad. Ten decamer primers were used to amplify total DNA from these seven fungal isolates, and RAPD banding patterns were compared. Genetic similarity among isolates was determined by pair-wise comparisons of the shared number of DNA bands on an agarose gel. There was considerable genetic variation among isolates of the symbiotic fungus even within sites. Pairs of fungal isolates from the two different sites shared an average of only 36% of the bands in their RAPD profiles, while pairs from the within sites shared an average of 72% of the bands. RAPD markers may be useful for further investigation of the genetic structure of the fungal symbiont within species of leaf-cutting ants.