Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271741

RESUMO

Different therapeutic strategies have been investigated to target and eliminate HIV-1-infected cells by using armed antibodies specific to viral proteins, with varying degrees of success. Herein, we propose a new strategy by combining photodynamic therapy (PDT) with HIV Env-targeted immunotherapy, and refer to it as HIV photoimmunotherapy (PIT). A human anti-gp41 antibody (7B2) was conjugated to two photosensitizers (PSs) with different charges through different linking strategies; "Click" conjugation by using an azide-bearing porphyrin attached via a disulfide bridge linker with a drug-to-antibody ratio (DAR) of exactly 4, and "Lysine" conjugation by using phthalocyanine IRDye 700DX dye with average DARs of 2.1, 3.0 and 4.4. These photo-immunoconjugates (PICs) were compared via biochemical and immunological characterizations regarding the dosimetry, solubility, and cell targeting. Photo-induced cytotoxicity of the PICs were compared using assays for apoptosis, reactive oxygen species (ROS), photo-cytotoxicity, and confocal microscopy. Targeted phototoxicity seems to be primarily dependent on the binding of PS-antibody to the HIV antigen on the cell membrane, whilst being independent of the PS type. This is the first report of the application of PIT for HIV immunotherapy by killing HIV Env-expressing cells.


Assuntos
Ânions , Fármacos Anti-HIV/farmacologia , Cátions , Imunoconjugados/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Ânions/química , Fármacos Anti-HIV/química , Anticorpos Monoclonais , Apoptose/efeitos dos fármacos , Cátions/química , Linhagem Celular Tumoral , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , HIV/efeitos dos fármacos , HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Imunoconjugados/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
2.
Pharmaceutics ; 14(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336059

RESUMO

Different light-based strategies have been investigated to inactivate viruses. Herein, we developed an HIV-based pseudotyped model of SARS-CoV-2 (SC2) to study the mechanisms of virus inactivation by using two different strategies; photoinactivation (PI) by UV-C light and photodynamic inactivation (PDI) by Photodithazine photosensitizer (PDZ). We used two pseudoviral particles harboring the Luciferase-IRES-ZsGreen reporter gene with either a SC2 spike on the membrane or without a spike as a naked control pseudovirus. The mechanism of viral inactivation by UV-C and PDZ-based PDI were studied via biochemical characterizations and quantitative PCR on four levels; free-cell viral damage; viral cell entry; DNA integration; and expression of reporter genes. Both UV-C and PDZ treatments could destroy single stranded RNA (ssRNA) and the spike protein of the virus, with different ratios. However, the virus was still capable of binding and entering into the HEK 293T cells expressing angiotensin-converting enzyme 2 (ACE-2). A dose-dependent manner of UV-C irradiation mostly damages the ssRNA, while PDZ-based PDI mostly destroys the spike and viral membrane in concentration and dose-dependent manners. We observed that the cells infected by the virus and treated with either UV-C or PDZ-based PDI could not express the luciferase reporter gene, signifying the viral inactivation, despite the presence of RNA and DNA intact genes.

3.
ACS Omega ; 6(25): 16524-16534, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34235324

RESUMO

HIV-infected cells persist for decades in patients administered with antiretroviral therapy (ART). Meanwhile, an alarming surge in drug-resistant HIV viruses has been occurring. Addressing these issues, we propose the application of photoimmunotherapy (PIT) against not only HIV Env-expressing cells but also HIV. Previously, we showed that a human anti-gp41 antibody (7B2) conjugated to cationic or anionic photosensitizers (PSs) could specifically target and kill the HIV Env-expressing cells. Here, our photolysis studies revealed that the binding of photoimmunoconjugates (PICs) on the membrane of HIV Env-expressing cells is sufficient to induce necrotic cell death due to physical damage to the membrane by singlet oxygen, which is independent of the type of PSs. This finding persuaded us to study the virus photoinactivation of PICs using two HIV-1 strains, X4 HIV-1 NL4-3 and JR-CSF virus. We observed that the PICs could destroy the viral strains, probably via physical damage on the HIV envelope. In conclusion, we report the application of PIT as a possible dual-tool for HIV immunotherapy and ART by killing HIV-expressing cells and cell-free HIV, respectively.

4.
Physiol Rep ; 9(2): e14707, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33463909

RESUMO

The COVID-19 has originated from Wuhan, China, in December 2019 and has been affecting the public health system, society, and economy in an unheard-of manner. There is no specific treatment or vaccine available for COVID-19. Previous data showed that men are more affected than women by COVID-19, then we hypothesized whether sex hormones could be protecting the female organism against the infection. VERO E6 cells have been commonly used as in vitro model for SARS-CoV-2 infection. In our experimental approach, we have treated VERO E6 cells with 17ß-estradiol to evaluate the modulation of SARS-CoV-2 infection in this cell line. Here we demonstrated that estrogen protein receptors ERα, ERß, and GPER1 are expressed by VERO E6 cells and could be used to study the effects of this steroid hormone. Previous and 24-hours post-infection, cells treated with 17ß-estradiol revealed a reduction in the viral load. Afterward, we found that SARS-CoV-2 infection per se results in ACE2 and TMPRSS2 increased gene expression in VERO E6-cell, which could be generating a cycle of virus infection in host cells. The estrogen treatment reduces the levels of the TMPRSS2, which are involved with SARS-CoV-2 infectiveness capacity, and hence, reducing the pathogenicity/genesis. These data suggest that estrogen could be a potential therapeutic target promoting cell protection against SARS-CoV-2. This opens new possibilities for further studies on 17ß-estradiol in human cell lines infected by SARS-CoV-2 and at least in part, explain why men developed a more severe COVID-19 compared to women.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Estradiol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Vero
5.
Tissue Cell ; 67: 101412, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866727

RESUMO

Scaffolds composed of extracellular matrix (ECM) can assist tissue remodeling and repair following injury. The ECM is a complex biomaterial composed of proteins, glycoproteins, proteoglycans, and glycosaminoglycans, secreted by cells. The ECM contains fundamental biological cues that modulate cell behavior and serves as a structural scaffold for cell adhesion and growth. For clinical applications, where immune rejection is a constraint, ECM can be processed using decellularization methods intended to remove cells and donor antigens from tissue or organs, while preserving native biological cues essential for cell growth and differentiation. Recent studies show bioengineered organs composed by a combination of a diversity of materials and stem cells as a possibility of new therapeutic strategies to treat diseases that affect different tissues and organs, including the central nervous system (CNS). Nevertheless, the methodologies currently described for brain decellularization involve the use of several chemical reagents with many steps that ultimately limit the process of organ or tissue recellularization. Here, we describe for the first time a fast and straightforward method for complete decellularization of mice brain by the combination of rapid freezing and thawing following the use of only one detergent (Sodium dodecyl sulfate (SDS)). Our data show that using the protocol we describe here, the brain was entirely decellularized, while still maintaining ECM components that are essential for cell survival on the scaffold. Our results also show the cell-loading of the decellularized brain matrix with Neuro2a cells, which were identified by immunohistochemistry in their undifferentiated form. We conclude that this novel and simple method for brain decellularization can be used as a scaffold for cell-loading.


Assuntos
Encéfalo/fisiologia , Alicerces Teciduais/química , Animais , Diferenciação Celular , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Ácidos Nucleicos/metabolismo , Dodecilsulfato de Sódio
6.
Sci Rep ; 9(1): 9973, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292491

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.


Assuntos
Antineoplásicos/farmacologia , Ependimoma/tratamento farmacológico , Proteínas e Peptídeos Salivares/farmacologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes , Criança , Pré-Escolar , Feminino , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Humanos , Masculino , Ratos Wistar , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161782

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Assuntos
Líquido Amniótico/metabolismo , Comportamento Animal , Isquemia Encefálica , Transplante de Células-Tronco , Células-Tronco/metabolismo , Acidente Vascular Cerebral , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Gravidez , Ratos , Ratos Wistar , Células-Tronco/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
8.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413179

RESUMO

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/patologia , Tropismo , Animais , Neoplasias Encefálicas/ultraestrutura , Carcinogênese/metabolismo , Carcinogênese/patologia , Ensaios de Migração Celular , Proliferação de Células , Separação Celular , Quimiocinas/metabolismo , Glioblastoma/ultraestrutura , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Células-Tronco Neoplásicas/ultraestrutura , Pontos Quânticos/metabolismo , Ratos Wistar , Receptores de Quimiocinas/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA