RESUMO
Vector control in the Bijagós Archipelago of Guinea-Bissau currently relies on pyrethroid insecticide-treated nets. However, data on insecticide resistance in Guinea-Bissau is limited. This study identified deltamethrin resistance in the Anopheles gambiae sensu lato complex on Bubaque island using WHO tube tests in November 2022. Whole genome sequencing of An. gambiae sensu stricto mosquitoes identified six single nucleotide polymorphisms (SNPs) previously associated with, or putatively associated with, insecticide resistance: T791M, L995F, N1570Y, A1746S and P1874L in the vgsc gene, and L119V in the gste2 gene. Twenty additional non-synonymous SNPs were identified in insecticide-resistance associated genes. Four of these SNPs were present at frequencies over 5% in the population: T154S, I126F and G26S in the vgsc gene and A65S in ace1. Genome wide selection scans using Garud's H12 statistic identified two selective sweeps: one in chromosome X and one in chromosome 2R. Both selective sweeps overlap with metabolic genes previously associated with insecticide resistance, including cyp9k1 and the cyp6aa/cyp6p gene cluster. This study presents the first phenotypic testing for deltamethrin resistance and the first whole genome sequence data for Anophelesgambiae mosquitoes from the Bijagós, contributing data of significance for vector control policy in this region.
Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Nitrilas , Polimorfismo de Nucleotídeo Único , Piretrinas , Animais , Piretrinas/farmacologia , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Nitrilas/farmacologia , Guiné-Bissau , Inseticidas/farmacologia , Fenótipo , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Seleção Genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismoRESUMO
BACKGROUND: Insecticide resistance is reducing the efficacy of vector control interventions, consequently threatening efforts to control vector-borne diseases, including malaria. Investigating the prevalence of molecular markers of resistance is a useful tool for monitoring the spread of insecticide resistance in disease vectors. The Bijagós Archipelago (Bijagós) in Guinea-Bissau is a region of stable malaria transmission where insecticide-treated nets are the mainstay for malaria control. However, the prevalence of molecular markers of insecticide resistance in malaria vectors is not well understood. METHODS: A total of 214 Anopheles mosquitoes were analysed from 13 islands across the Bijagós. These mosquitoes were collected using CDC light traps in November 2019, during the peak malaria transmission season. High-throughput multiplex amplicon sequencing was used to investigate the prevalence of 17 different molecular markers associated with insecticide resistance in four genes: vgsc, rdl, ace1 and gste2. RESULTS: Of the 17 screened mutations, four were identified in mosquitoes from the Bijagós: vgsc L995F (12.2%), N1570Y (6.2%) and A1746S (0.7%) and rdl A269G (1.1%). This study is the first to report the L995F knock-down resistance (kdr)-west allele in Anopheles melas on the Archipelago. An additional eight non-synonymous single-nucleotide polymorphisms were identified across the four genes which have not been described previously. The prevalences of the vgsc L995F and N1570Y mutations were higher on Bubaque Island than on the other islands in this study; Bubaque is the most populous island in the archipelago, with the greatest population mobility and connection to continental Guinea-Bissau. CONCLUSIONS: This study provides the first surveillance data for genetic markers present in malaria vectors from islands across the Bijagós Archipelago. Overall prevalence of insecticide resistance mutations was found to be low. However, the identification of the vgsc L995F and N1570Y mutations associated with pyrethroid resistance warrants further monitoring. This is particularly important as the mainstay of malaria control on the islands is the use of pyrethroid insecticide-treated nets.
Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Piretrinas/farmacologia , Genômica , MutaçãoRESUMO
BACKGROUND: Anopheles melas is an understudied malaria vector with a potential role in malaria transmission on the Bijagós Archipelago of Guinea-Bissau. This study presents the first whole-genome sequencing and population genetic analysis for this species from the Bijagós. To our knowledge, this also represents the largest population genetic analysis using WGS data from non-pooled An. melas mosquitoes. METHODS: WGS was conducted for 30 individual An. melas collected during the peak malaria transmission season in 2019 from six different islands on the Bijagós Archipelago. Bioinformatics tools were used to investigate the population structure and prevalence of insecticide resistance markers in this mosquito population. RESULTS: Insecticide resistance mutations associated with pyrethroid resistance in Anopheles gambiae s.s. from the Bijagós were absent in the An. melas population, and no signatures of selective sweeps were identified in insecticide resistance-associated genes. Analysis of structural variants identified a large duplication encompassing the cytochrome-P450 gene cyp9k1. Phylogenetic analysis using publicly available mitochondrial genomes indicated that An. melas from the Bijagós split into two phylogenetic groups because of differentiation on the mitochondrial genome attributed to the cytochrome C oxidase subunits COX I and COX II and the NADH dehydrogenase subunits 1, 4, 4L and 5. CONCLUSIONS: This study identified an absence of insecticide-resistant SNPs common to An. gambiae in the An. melas population, but did identify structural variation over insecticide resistance-associated genes. Furthermore, this study presents novel insights into the population structure of this malaria vector using WGS analysis. Additional studies are required to further understand the role of this vector in malaria transmission.
Assuntos
Anopheles , Resistência a Inseticidas , Malária , Mosquitos Vetores , Filogenia , Sequenciamento Completo do Genoma , Animais , Resistência a Inseticidas/genética , Anopheles/genética , Anopheles/efeitos dos fármacos , Guiné-Bissau/epidemiologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão , Malária/epidemiologia , Inseticidas/farmacologia , Piretrinas/farmacologia , Genoma Mitocondrial/genética , FemininoRESUMO
BACKGROUND: As the control of malaria remains heavily dependent on vector management interventions, it is important to understand the impact of these on mosquito populations. Age-grading is a valuable tool for this; however, logistical challenges in remote, resource-poor areas make current methodologies difficult to incorporate into clinical trials and routine surveillance. Our aim was to validate a methodology that could be easily implemented in such settings. Using dried mosquito specimens instead of freshly killed ones, we validated the commonly used ovarian tracheation technique for assessing population age structure. METHODS: Laboratory-reared Anopheles coluzzii mosquitoes with known parity status were dry preserved in silica gel for up to 12 weeks and rehydrated prior to parity assessment. The results were compared to parity results for freshly killed mosquitoes from the same colony. Preserved, field-caught Anopheles gambiae sensu lato (s.l.) from Guinea-Bissau were assessed by three different assessors blinded to each other's scores. An overall index of agreement was calculated using inter-rater reliability of all assessor pairings. The impact of preservation time was investigated using a one-way ANOVA to look for differences in assessor agreement over three time periods. RESULTS: The parity status was correctly identified for 90% of dry preserved and rehydrated insectary-reared An. coluzzii and for 98% of freshly killed insectary-reared An. coluzzii. The inter-rater reliability was highest (0.94) for freshly killed An. coluzzii. The results for all time points showed excellent strength of agreement between assessors. For field-caught An. gambiae s.l., the overall index of agreement between all three assessors was 0.86 (95% confidence interval 0.78-0.93), indicating almost perfect agreement. There was no significant difference between assessor agreement between time frames. CONCLUSIONS: Dry preserving and rehydrating Anopheles mosquitoes provides an alternative to using freshly killed mosquitoes to assess the efficacy of a control intervention in remote settings where it is logistically difficult to dissect fresh specimens. This method also provides the flexibility required for parity assessment to be done on larger scales over bigger areas.
Assuntos
Anopheles , Animais , Hidratação , Mosquitos Vetores , Reprodutibilidade dos TestesRESUMO
Following integrated malaria control interventions, malaria burden on the Bijagós Archipelago has significantly decreased. Understanding the genomic diversity of circulating Plasmodium falciparum malaria parasites can assist infection control, through identifying drug resistance mutations and characterising the complexity of population structure. This study presents the first whole genome sequence data for P. falciparum isolates from the Bijagós Archipelago. Amplified DNA from P. falciparum isolates sourced from dried blood spot samples of 15 asymptomatic malaria cases were sequenced. Using 1.3 million SNPs characterised across 795 African P. falciparum isolates, population structure analyses revealed that isolates from the archipelago cluster with samples from mainland West Africa and appear closely related to mainland populations; without forming a separate phylogenetic cluster. This study characterises SNPs associated with antimalarial drug resistance on the archipelago. We observed fixation of the PfDHFR mutations N51I and S108N, associated with resistance to sulphadoxine-pyrimethamine, and the continued presence of PfCRT K76T, associated with chloroquine resistance. These data have relevance for infection control and drug resistance surveillance; particularly considering expected increases in antimalarial drug use following updated WHO recommendations, and the recent implementation of seasonal malaria chemoprevention and mass drug administration in the region.
Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Guiné-Bissau , Filogenia , Proteínas de Protozoários/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/parasitologia , Mutação , Resistência a Medicamentos/genética , Combinação de Medicamentos , Dinâmica PopulacionalRESUMO
BACKGROUND: Scabies is highly endemic among impoverished populations and has been recently included in the WHO's list of neglected tropical diseases (NTDs). Community support and behavioural changes are essential for the success of control interventions. This study aimed to explore beliefs, prevention attitudes and healthcare-seeking behaviours towards scabies in the Bijagós Archipelago of Guinea-Bissau. METHODS: Data were collected through two methods. Community key informants (community members, community health workers, healthcare workers and traditional healers) were interviewed using snowball sampling. A questionnaire covering perceptions, attitudes and practices was administered to community members using random cluster sampling. Thematic analysis of qualitative data was applied to identify themes. Descriptive statistics were used for quantitative data analysis. RESULTS: There was a satisfactory awareness about scabies, but perceptions about disease causation and transmission were imprecise. Misconceptions about personal hygiene as the primary measure for scabies prevention were recurrent. Some participants recognised the importance of early treatment to interrupt transmission. Treatment of close contacts was not considered important. Costs were the main determining factor for treatment choice between traditional healer and the local health centre. Late presentation and delayed treatment were common and associated with poverty and stigmatisation. Scabies impaired quality of life by affecting social interactions, health, fitness to work and school attendance. CONCLUSIONS: There is a need to improve education, recognition, management and affordable access to treatment. Community education, healthcare workers' training and skin NTD integrated control programmes should address the challenges highlighted in this study.