Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 51(10-12): 1633-1648, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31654210

RESUMO

For medical use of proteins and peptide-based drugs, it is desirable to have small biologically active sequences because they improve stability, reduce side effects, and production costs. Several plant defensins have their biological activities imparted by a sequence named γ-core. Vu-Def, a Vigna unguiculata defensin, has activity against Leishmania amazonensis, which is one etiological agent of leishmaniasis and for which new drugs are needed. Our intention was to understand if the region comprising the Vu-Def γ-core is responsible for the biological activity against L. amazonensis and to unveil its mechanism of action. Different microbiological assays with L. amazonensis in the presence of the synthetic peptide A36,42,44γ32-46Vu-Def were done, as well as ultrastructural and fluorescent analyses. A36,42,44γ32-46Vu-Def showed biological activity similar to Vu-Def. A36,42,44γ32-46Vu-Def (74 µM) caused 97% inhibition of L. amazonensis culture and parasites were unable to regrow in fresh medium. The cells of the treated parasites showed morphological alterations by ultrastructural analysis and fluorescent labelings that corroborate with the data of the organelles alterations. The general significance of our work is based on the description of a small synthetic peptide, A36,42,44γ32-46Vu-Def, which has activity on L. amazonensis and that the interaction between A36,42,44γ32-46Vu-Def-L. amazonensis results in parasite inhibition by the activation of an apoptotic-like cell death pathway.


Assuntos
Apoptose/efeitos dos fármacos , Defensinas/química , Leishmania/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Vigna/química , Sequência de Aminoácidos , Defensinas/farmacologia , Leishmania/crescimento & desenvolvimento , Modelos Moleculares , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Sementes/química
2.
J Chem Inf Model ; 58(11): 2294-2304, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30388003

RESUMO

We previously characterized the inhibitory activity of human salivary α-amylase (HSA) and Callosobruchus maculatus intestinal α-amylases by the plant lipid transfer protein from Vigna unguiculata ( Vu-LTP). Herein, we further study this inhibitory activity. First by an analysis of protein α-amylase inhibitors complexed with α-amylase, we find that positively charged amino acids of inhibitors interact with the active site of α-amylases and we know that Vu-LTP is rich in positively charged amino acid residues. For this reason, we model Vu-LTP, and based on its three-dimensional structure, we choose five peptides to be synthesized. Herein, we report that two peptides of Vu-LTP are responsible for HSA inhibition. A comparison of primary and tertiary structures of LTPs with and without inhibitory activity against α-amylase, superimposed with the sequence of Vu-LTP mapped for HSA inhibition, reinforces our suggestion that positively charged amino acids in loops are responsible for the inhibition. To prove our observation, one modified peptide is synthesized in which Arg39 is replaced by Gln. This modified peptide loses the HSA inhibitory property presented by the unmodified peptide. Therefore, we describe a new biological active for Vu-LTP, i.e. the α-amylase inhibitory activity that is not a fortuitous biological activity and probably has evolved to perform a biological function which is still unknown. A good candidate should be defense against insects. The results of this study also expand the possible biotechnological applications of LTPs.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Vigna/metabolismo , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Proteínas de Transporte/química , Humanos , Modelos Moleculares , Proteínas de Plantas/química , Conformação Proteica , Alinhamento de Sequência , Vigna/química , alfa-Amilases/química
3.
Comput Biol Chem ; 85: 107193, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32143021

RESUMO

VuLTP1.1, a LTP1 from Vigna unguiculata, inhibits 78.1 % of the human salivary α-amylase (HSA) activity at 20 µM. We had performed a correlation study between VuLTP1.1 structure and HSA inhibitory activity and showed that two VuLTP1.1 regions are responsible for HSA inhibition. In one of them we had characterized the crucial importance of an Arg39 for inhibition. In this work, we analyzed the VuLTP1.1-HSA interaction by protein-protein docking to understand the most probable interaction model and the mechanism of HSA inhibition by VuLTP1.1. The VuLTP1.1 tertiary structure quality and refinement as well as the docking assay between VuLTP1.1 and HSA were done by bioinformatic programs. HSA inhibition occurs by direct interaction of the VuLTP1.1 with the HSA causing the obstruction of the carbohydrate biding cleft with Gibbs free energy of -18.5 Kcal/mol and the dissociation constant of 2.6E-14 M. The previously identified Arg39 of VuLTP1.1 is burrowed into the active site of the HSA and there it interacts with the Asp300 of HSA catalytic site by a hydrogen bond. We had confirmed the importance of the Arg39 of VuLTP1.1 for the HSA inhibition which interacts with the Asp300 at the HSA active site. I-2, a LTP-like peptide, presents the same HSA inhibition pattern that VuLTP1.1, which indicates that the inhibition mechanism of the LTPs towards α-amylase is very similar. For the best of our knowledge, it is the first time that the HSA inhibition mechanism was understood and described for the LTP1s using VuLTP1.1 and I-2 as prototype inhibitors.


Assuntos
Proteínas de Transporte/metabolismo , Inibidores Enzimáticos/farmacologia , alfa-Amilases Salivares/antagonistas & inibidores , Vigna/química , Proteínas de Transporte/química , Biologia Computacional , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , alfa-Amilases Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA