Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biol Chem ; 401(4): 497-503, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31702995

RESUMO

Impaired energy metabolism may play a role in the pathogenesis of neurodevelopmental disorders including fragile X syndrome (FXS). We checked brain energy status and some aspects of cell bioenergetics, namely the activity of key glycolytic enzymes, glycerol-3-phosphate shuttle and mitochondrial respiratory chain (MRC) complexes, in the cerebral cortex of the Fmr1 knockout (KO) mouse model of FXS. We found that, despite a hyperactivation of MRC complexes, adenosine triphosphate (ATP) production via mitochondrial oxidative phosphorylation (OXPHOS) is compromised, resulting in brain energy impairment in juvenile and late-adult Fmr1 KO mice. Thus, an altered mitochondrial energy metabolism may contribute to neurological impairment in FXS.


Assuntos
Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitocôndrias/metabolismo , Animais , Córtex Cerebral/patologia , Síndrome do Cromossomo X Frágil/patologia , Camundongos , Camundongos Knockout
2.
Cell Mol Life Sci ; 75(15): 2763-2776, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29728715

RESUMO

Glucose avidity, high glycolysis and L-lactate production, regardless of oxygen availability, are the main traits of cancer metabolic reprogramming. The idea that mitochondria are dysfunctional in cancer, thus causing a glycolysis increase for ATP production and L-lactate accumulation as a dead-end product of glucose catabolism, has oriented cancer research for many years. However, it was shown that mitochondrial metabolism is essential for cancer cell proliferation and tumorigenesis and that L-lactate is a fundamental energy substrate with tumor growth-promoting and signaling capabilities. Nevertheless, the known ability of mitochondria to take up and oxidize L-lactate has remained ignored by cancer research. Beginning with a brief overview of the metabolic changes occurring in cancer, we review the present knowledge of L-lactate formation, transport, and intracellular oxidation and underline the possible role of L-lactate metabolism as energetic, signaling and anabolic support for cancer cell proliferation. These unexplored aspects of cancer biochemistry might be exploited for therapeutic benefit.


Assuntos
Metabolismo Energético , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Trifosfato de Adenosina/metabolismo , Proliferação de Células , Glicólise , Humanos , Modelos Biológicos , Neoplasias/patologia , Fosforilação Oxidativa
3.
Biochim Biophys Acta ; 1862(6): 1093-104, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26964795

RESUMO

Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations.


Assuntos
Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Síndrome de Down/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Resveratrol/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Animais , Catequina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases/metabolismo
4.
Biogerontology ; 18(3): 301-319, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314935

RESUMO

After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to ß-amyloid (Aß)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aß toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aß. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria-whose dysfunction and central role in Aß toxicity is an AD hallmark-are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aß-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aß-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aß toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Consumo de Oxigênio , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apoptose , Glucose/metabolismo , Humanos , Fosforilação Oxidativa
5.
J Bioenerg Biomembr ; 47(6): 493-506, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26530987

RESUMO

3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 µM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Mitocôndrias/metabolismo , Piruvatos/metabolismo , Morte Celular , Humanos , Masculino , Neoplasias da Próstata
6.
Biochim Biophys Acta ; 1832(12): 2085-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23911347

RESUMO

Increasing evidence reveals a large dependency of epithelial cancer cells on oxidative phosphorylation (OXPHOS) for energy production. In this study we tested the potential of epigallocatechin-3-gallate (EGCG), a natural polyphenol known to target mitochondria, in inducing OXPHOS impairment and cell energy deficit in human epitheliod (REN cells) and biphasic (MSTO-211H cells) malignant pleural mesothelioma (MMe), a rare but highly aggressive tumor with high unmet need for treatment. Due to EGCG instability that causes H2O2 formation in culture medium, the drug was added to MMe cells in the presence of exogenous superoxide dismutase and catalase, already proved to stabilize the EGCG molecule and prevent EGCG-dependent reactive oxygen species formation. We show that under these experimental conditions, EGCG causes the selective arrest of MMe cell growth with respect to normal mesothelial cells and the induction of mitochondria-mediated apoptosis, as revealed by early mitochondrial ultrastructure modification, swelling and cytochrome c release. We disclose a novel mechanism by which EGCG induces apoptosis through the impairment of mitochondrial respiratory chain complexes, particularly of complex I, II and ATP synthase. This induces a strong reduction in ATP production by OXPHOS, that is not adequately counterbalanced by glycolytic shift, resulting in cell energy deficit, cell cycle arrest and apoptosis. The EGCG-dependent negative modulation of mitochondrial energy metabolism, selective for cancer cells, gives an important input for the development of novel pharmacological strategies for MMe.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pleurais/patologia , Trifosfato de Adenosina/metabolismo , Catalase/metabolismo , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma Maligno , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
7.
Biochim Biophys Acta ; 1832(4): 542-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23291000

RESUMO

A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) - a natural polyphenol component of green tea - to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content. In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.


Assuntos
Trifosfato de Adenosina/biossíntese , Catequina/análogos & derivados , Síndrome de Down , Mitocôndrias , Catequina/farmacologia , Células Cultivadas , Cromossomos Humanos Par 21 , Síndrome de Down/genética , Síndrome de Down/fisiopatologia , Fibroblastos/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Chá/química , Fatores de Transcrição/metabolismo , Trissomia
8.
Anal Biochem ; 444: 25-31, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018341

RESUMO

Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.


Assuntos
Encéfalo/citologia , Criopreservação , Mitocôndrias/fisiologia , Animais , Feminino , Camundongos , Membranas Mitocondriais/metabolismo
9.
Biosystems ; : 105288, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128646

RESUMO

This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.

10.
Antioxidants (Basel) ; 12(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001829

RESUMO

Hemoglobin is one of the proteins that are more susceptible to S-glutathionylation and the levels of its modified form, glutathionyl hemoglobin (HbSSG), increase in several human pathological conditions. The scope of the present review is to provide knowledge about how hemoglobin is subjected to S-glutathionylation and how this modification affects its functionality. The different diseases that showed increased levels of HbSSG and the methods used for its quantification in clinical investigations will be also outlined. Since there is a growing need for precise and reliable methods for markers of oxidative stress in human blood, this review highlights how HbSSG is emerging more and more as a good indicator of severe oxidative stress but also as a key pathogenic factor in several diseases.

11.
Antioxidants (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35624868

RESUMO

S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.

12.
FEBS Lett ; 596(15): 1955-1968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35599367

RESUMO

Glycolysis is present in nearly all organisms alive today. This article proposes an evolutionary trajectory for the development of glycolysis in the framework of the chemoautotrophic theory for the origin of life. In the proposal, trioses and triose-phosphates were appointed to starting points. The six-carbon and the three-carbon intermediates developed in the direction of gluconeogenesis and glycolysis, respectively, differing from the from-bottom-to-up development of enzymatic glycolysis. The examination of enzymatic reaction mechanisms revealed that the enzymes incorporated chemical mechanisms of the nonenzymatic stage, making possible to identify kinship between glyoxalases and glyceraldehyde 3-phosphate dehydrogenase as well as methylglyoxal synthase and triose-phosphate isomerase. This developmental trajectory may shed light on how glycolysis might have developed in the nonenzymatic era.


Assuntos
Fósseis , Prebióticos , Carbono , Glicólise , Triose-Fosfato Isomerase/metabolismo , Trioses
13.
Antioxidants (Basel) ; 10(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379155

RESUMO

Reactive oxygen species (ROS) are produced constantly inside the cells as a consequence of nutrient catabolism. The balance between ROS production and elimination allows to maintain cell redox homeostasis and biological functions, avoiding the occurrence of oxidative distress causing irreversible oxidative damages. A fundamental player in this fine balance is reduced glutathione (GSH), required for the scavenging of ROS as well as of the reactive 2-oxoaldehydes methylglyoxal (MGO). MGO is a cytotoxic compound formed constitutively as byproduct of nutrient catabolism, and in particular of glycolysis, detoxified in a GSH-dependent manner by the glyoxalase pathway consisting in glyoxalase I and glyoxalase II reactions. A physiological increase in ROS production (oxidative eustress, OxeS) is promptly signaled by the decrease of cellular GSH/GSSG ratio which can induce the reversible S-glutathionylation of key proteins aimed at restoring the redox balance. An increase in MGO level also occurs under oxidative stress (OxS) conditions probably due to several events among which the decrease in GSH level and/or the bottleneck of glycolysis caused by the reversible S-glutathionylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. In the present review, it is shown how MGO can play a role as a stress signaling molecule in response to OxeS, contributing to the coordination of cell metabolism with gene expression by the glycation of specific proteins. Moreover, it is highlighted how the products of MGO metabolism, S-D-lactoylglutathione (SLG) and D-lactate, which can be taken up and metabolized by mitochondria, could play important roles in cell response to OxS, contributing to cytosol-mitochondria crosstalk, cytosolic and mitochondrial GSH pools, energy production, and the restoration of the GSH/GSSG ratio. The role for SLG and glyoxalase II in the regulation of protein function through S-glutathionylation under OxS conditions is also discussed. Overall, the data reported here stress the need for further studies aimed at understanding what role the evolutionary-conserved MGO formation and metabolism can play in cell signaling and response to OxS conditions, the aberration of which may importantly contribute to the pathogenesis of diseases associated to elevated OxS.

14.
J Clin Med ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698802

RESUMO

Cystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky. Furthermore, a defective CFTR appears to produce a redox imbalance in epithelial cells and extracellular fluids and to cause an abnormal generation of reactive oxygen species: as a consequence, oxidative stress has been implicated as a causative factor in the aetiology of the process. Moreover, massive evidences show that defective CFTR gives rise to extracellular GSH level decrease and elevated glucose concentrations in airway surface liquid (ASL), thus encouraging lung infection by pathogens in the CF advancement. Recent research in progress aims to rediscover a possible role of mitochondria in CF. Here the latest new and recent studies on mitochondrial bioenergetics are collected. Surprisingly, they have enabled us to ascertain that mitochondria have a leading role in opposing the high ASL glucose level as well as oxidative stress in CF.

15.
Ageing Res Rev ; 53: 100915, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31173890

RESUMO

Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-ß-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Glutationa/análogos & derivados , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Aldeído Pirúvico/metabolismo , Senilidade Prematura , Animais , Metabolismo Energético , Glutationa/metabolismo , Glicólise , Humanos , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/toxicidade , Tioléster Hidrolases/metabolismo
16.
Biochim Biophys Acta ; 1767(4): 281-94, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17418088

RESUMO

We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.


Assuntos
Helianthus/metabolismo , Mitocôndrias/enzimologia , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Trifosfato de Adenosina/biossíntese , Transporte Biológico , Helianthus/efeitos dos fármacos , Helianthus/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Fosfoenolpiruvato/farmacologia , Piruvato Quinase/análise , Ácido Pirúvico/metabolismo
17.
Biochim Biophys Acta ; 1767(11): 1285-99, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17950241

RESUMO

Having confirmed that externally added L-lactate can enter cerebellar granule cells, we investigated whether and how L-lactate is metabolized by mitochondria from these cells under normal or apoptotic conditions. (1) L-lactate enters mitochondria, perhaps via an L-lactate/H+ symporter, and is oxidized in a manner stimulated by ADP. The existence of an L-lactate dehydrogenase, located in the inner mitochondrial compartment, was shown by immunological analysis. Neither the protein level nor the Km and Vmax values changed en route to apoptosis. (2) In both normal and apoptotic cell homogenates, externally added L-lactate caused reduction of the intramitochondrial pyridine cofactors, inhibited by phenylsuccinate. This process mirrored L-lactate uptake by mitochondria and occurred with a hyperbolic dependence on L-lactate concentrations. Pyruvate appeared outside mitochondria as a result of external addition of L-lactate. The rate of the process depended on L-lactate concentration and showed saturation characteristics. This shows the occurrence of an intracellular L-lactate/pyruvate shuttle, whose activity was limited by the putative L-lactate/pyruvate antiporter. Both the carriers were different from the monocarboxylate carrier. (3) L-lactate transport changed en route to apoptosis. Uptake increased in the early phase of apoptosis, but decreased in the late phase with characteristics of a non-competitive like inhibition. In contrast, the putative L-lactate/pyruvate antiport decreased en route to apoptosis with characteristics of a competitive like inhibition in early apoptosis, and a mixed non-competitive like inhibition in late apoptosis.


Assuntos
Apoptose/fisiologia , Cerebelo/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Potássio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico , Western Blotting , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucose/farmacologia , Cinética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
18.
FEBS Lett ; 582(25-26): 3569-76, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18831974

RESUMO

Although mitochondria have been the object of intensive study over many decades, some aspects of their metabolism remain to be fully elucidated, including the L-lactate metabolism. We review here the novel insights arisen from investigations on L-lactate metabolism in mammalian, plant and yeast mitochondria. The presence of L-lactate dehydrogenases inside mitochondria, where L-lactate enters in a carrier-mediated fashion, suggests that mitochondria play an important role in L-lactate metabolism. Functional studies have demonstrated the occurrence of several L-lactate carriers. Moreover, immunological investigations have proven the existence of monocarboxylate translocator isoforms in mitochondria.


Assuntos
Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Masculino , Camundongos , Plantas/metabolismo , Plantas/ultraestrutura , Leveduras/metabolismo , Leveduras/ultraestrutura
19.
Neuropharmacology ; 121: 79-88, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28419872

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that neurobehavioral and brain molecular alterations can be rescued in a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family, crucially involved in the regulation of brain structural plasticity and cognitive processes, can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective agonist. The present study extends previous findings by demonstrating that LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues mitochondrial respiratory chain impairment, oxidative phosphorylation deficiency and the reduced energy status in the brain of heterozygous female mice from two highly validated mouse models of RTT (MeCP2-308 and MeCP2-Bird mice). Moreover, LP-211 treatment completely restored the radical species overproduction by brain mitochondria in the MeCP2-308 model and partially recovered the oxidative imbalance in the more severely affected MeCP2-Bird model. These results provide the first evidence that RTT brain mitochondrial dysfunction can be rescued targeting the brain 5-HT7R and add compelling preclinical evidence of the potential therapeutic value of LP-211 as a pharmacological approach for this devastating neurodevelopmental disorder.


Assuntos
Encéfalo/metabolismo , Doenças Mitocondriais/terapia , Receptores de Serotonina/metabolismo , Síndrome de Rett/complicações , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glucosefosfato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/metabolismo , NADP/metabolismo , Piperazinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Rett/genética , Agonistas do Receptor de Serotonina/uso terapêutico , Superóxido Dismutase/metabolismo
20.
Biochim Biophys Acta ; 1708(1): 13-22, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15949980

RESUMO

We report here initial studies on D-lactate metabolism in Jerusalem artichoke. It was found that: 1) D-lactate can be synthesized by Jerusalem artichoke by virtue of the presence of glyoxalase II, the activity of which was measured photometrically in both isolated Jerusalem artichoke mitochondria and cytosolic fraction after the addition of S-D-lactoyl-glutathione. 2) Externally added D-lactate caused oxygen consumption by mitochondria, mitochondrial membrane potential increase and proton release, in processes that were insensitive to rotenone, but inhibited by both antimycin A and cyanide. 3) D-lactate was metabolized inside mitochondria by a flavoprotein, a putative D-lactate dehydrogenase, the activity of which could be measured photometrically in mitochondria treated with Triton X-100. 4) Jerusalem artichoke mitochondria can take up externally added D-lactate by means of a D-lactate/H(+) symporter investigated by measuring the rate of reduction of endogenous flavins. The action of the d-lactate translocator and of the mitochondrial D-lactate dehydrogenase could be responsible for the subsequent metabolism of d-lactate formed from methylglyoxal in the cytosol of Jerusalem artichoke.


Assuntos
Helianthus/metabolismo , Ácido Láctico/metabolismo , Transporte Biológico , Citosol/enzimologia , Helianthus/citologia , Lactato Desidrogenases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Consumo de Oxigênio , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Aldeído Pirúvico/metabolismo , Estereoisomerismo , Simportadores/metabolismo , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA