Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382357

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Detecção Precoce de Câncer , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Colágeno/metabolismo , Junções Célula-Matriz/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral
2.
Adv Funct Mater ; 33(51)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558868

RESUMO

Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.

3.
Small ; 18(39): e2201401, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978444

RESUMO

The human brain and central nervous system (CNS) present unique challenges in drug development for neurological diseases. One major obstacle is the blood-brain barrier (BBB), which hampers the effective delivery of therapeutic molecules into the brain while protecting it from blood-born neurotoxic substances and maintaining CNS homeostasis. For BBB research, traditional in vitro models rely upon Petri dishes or Transwell systems. However, these static models lack essential microenvironmental factors such as shear stress and proper cell-cell interactions. To this end, organ-on-a-chip (OoC) technology has emerged as a new in vitro modeling approach to better recapitulate the highly dynamic in vivo human brain microenvironment so-called the neural vascular unit (NVU). Such BBB-on-a-chip models have made substantial progress over the last decade, and concurrently there has been increasing interest in modeling various neurological diseases such as Alzheimer's disease and Parkinson's disease using OoC technology. In addition, with recent advances in other scientific technologies, several new opportunities to improve the BBB-on-a-chip platform via multidisciplinary approaches are available. In this review, an overview of the NVU and OoC technology is provided, recent progress and applications of BBB-on-a-chip for personalized medicine and drug discovery are discussed, and current challenges and future directions are delineated.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Transporte Biológico , Encéfalo , Humanos , Dispositivos Lab-On-A-Chip
4.
Artif Organs ; 46(7): E211-E243, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35349178

RESUMO

BACKGROUND: Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS: In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS: These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS: This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.


Assuntos
Bioimpressão , Engenharia Tecidual , Microtecnologia , Impressão Tridimensional , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Small ; 16(40): e2001647, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790000

RESUMO

Thrombosis is a life-threatening pathological condition in which blood clots form in blood vessels, obstructing or interfering with blood flow. Thrombolytic agents (TAs) are enzymes that can catalyze the conversion of plasminogen to plasmin to dissolve blood clots. The plasmin formed by TAs breaks down fibrin clots into soluble fibrin that finally dissolves thrombi. Several TAs have been developed to treat various thromboembolic diseases, such as pulmonary embolisms, acute myocardial infarction, deep vein thrombosis, and extensive coronary emboli. However, systemic TA administration can trigger non-specific activation that can increase the incidence of bleeding. Moreover, protein-based TAs are rapidly inactivated upon injection resulting in the need for large doses. To overcome these limitations, various types of nanocarriers have been introduced that enhance the pharmacokinetic effects by protecting the TA from the biological environment and targeting the release into coagulation. The nanocarriers show increasing half-life, reducing side effects, and improving overall TA efficacy. In this work, the recent advances in various types of TAs and nanocarriers are thoroughly reviewed. Various types of nanocarriers, including lipid-based, polymer-based, and metal-based nanoparticles are described, for the targeted delivery of TAs. This work also provides insights into issues related to the future of TA development and successful clinical translation.


Assuntos
Infarto do Miocárdio , Trombose , Coagulação Sanguínea , Preparações de Ação Retardada/uso terapêutico , Fibrinolíticos/uso terapêutico , Humanos , Trombose/tratamento farmacológico
6.
Appl Microbiol Biotechnol ; 103(12): 4767-4778, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31065753

RESUMO

Natural rubber latex (NRL) is a natural polymer which has arisen large interest in the biomedical field, mostly, due to its ability to facilitate angiogenesis and therefore, tissue repair. Moxifloxacin (MXF) is a broad-spectrum antibiotic orally administrated. Considering the biological properties of the NRL and its ability to deliver a wide range of compounds, the present study aimed to develop a novel device for infected chronic wound treatment. MXF-loaded NRL was obtained by a casting method. The results demonstrated that the incorporation of MXF in NRL did not promote any molecular interaction, preserving the integrity of the compounds. The mechanical properties of the biomaterial did not show any significant change, indicating enough elasticity for dermal application. The microbiological assays confirmed the ability of the polymer to deliver the drug without influencing its pharmacological properties. Moreover, it has expressed activity against major bacterial strains presented in wound infections. Finally, the biomaterial shown biocompatibility from the in vitro study. Thus, the present work has shown that MXF-loaded NRL membrane is a promising biomaterial to infected wound treatment.


Assuntos
Bandagens , Sistemas de Liberação de Medicamentos/instrumentação , Moxifloxacina/farmacologia , Polímeros/química , Infecção dos Ferimentos/terapia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Queratinócitos/microbiologia , Látex/química , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Borracha/química , Cicatrização
7.
Skin Res Technol ; 25(4): 461-468, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30623998

RESUMO

BACKGROUND: Nipple pain is the second most common reason for early weaning, exceeded only by the insufficient milk supply. Nipple fissures can bring other problems, acting also as a portal for bacteria and leading to mastitis. This work proposes the breast protector composite development using materials with tissue repair and moisturizing properties, aligned with a low-cost procedure, aiming not only to relieve pain, but also to heal the nipple fissures caused by breastfeeding. MATERIALS AND METHODS: For the dressings, production was used Natural Latex extracted from the rubber tree and glycerol. The Samples were evaluated chemically and physically by the techniques of Scanning Electron Microscopy, Fourier transform infrared spectroscopy, mechanical traction, and contact angle. The samples were also biologically evaluated by the hemolytic and cytotoxic activity assays. RESULTS: From the physical-chemical assays, the matrix with glycerol has high pore density; the natural latex and glycerol do not covalently interact, indicating that the glycerol can be released; the glycerol addition makes the matrix more elastic but fragile, and increase the wettability. From the biological assays, both materials showed no hemolytic effects; and the cytotoxicity results showed that glycerol did not present cytotoxicity in the fibroblasts, but show a dose-dependent influence in the keratinocytes. CONCLUSION: The material developed for application in breast fissures has mechanical properties similar to those found for materials for dermal applications, present high wettability and pore density. Furthermore, the material showed no cytolytic activity and the tests with skin cell cultures demonstrated the biocompatibility.


Assuntos
Bandagens/tendências , Aleitamento Materno/efeitos adversos , Mamilos/patologia , Dor/prevenção & controle , Bandagens/normas , Materiais Biocompatíveis/química , Crioprotetores/administração & dosagem , Crioprotetores/química , Feminino , Glicerol/administração & dosagem , Glicerol/química , Humanos , Látex/química , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Mamilos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização/efeitos dos fármacos
8.
World J Microbiol Biotechnol ; 33(4): 79, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28341908

RESUMO

The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L-1) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L-1) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L-1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.


Assuntos
Ácido Láctico/metabolismo , Oryza/química , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
9.
Biosensors (Basel) ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392005

RESUMO

The convergence of microfluidics and organ-on-a-chip (OoC) technologies has revolutionized our ability to create advanced in vitro models that recapitulate complex physiological processes [...].


Assuntos
Microfluídica , Engenharia Tecidual , Sistemas Microfisiológicos , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip
10.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543112

RESUMO

SMADs are the canonical intracellular effector proteins of the TGF-ß (transforming growth factor-ß). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-ß/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-ß/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.

11.
Gels ; 10(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247769

RESUMO

Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.

12.
Biomimetics (Basel) ; 9(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39056864

RESUMO

Ti6Al4V superalloy is recognized as a good candidate for bone implants owing to its biocompatibility, corrosion resistance, and high strength-to-weight ratio. While dense metal implants are associated with stress shielding issues due to the difference in densities, stiffness, and modulus of elasticity compared to bone tissues, the surface of the implant/scaffold should mimic the properties of the bone of interest to assure a good integration with a strong interface. In this study, we investigated the additive manufacturing of porous Ti6Al4V scaffolds and coating modification for enhanced osteoconduction using osteoblast cells. The results showed the successful fabrication of porous Ti6Al4V scaffolds with adequate strength. Additionally, the surface treatment with NaOH and Dopamine Hydrochloride (DOPA) promoted the formation of Dopamine Hydrochloride (DOPA) coating with an optimized coating process, providing an environment that supports higher cell viability and growth compared to the uncoated Ti6Al4V scaffolds, as demonstrated by the higher proliferation ratios observed from day 1 to day 29. These findings bring valuable insights into the surface modification of 3D-printed scaffolds for improved osteoconduction through the coating process in solutions.

13.
Biofabrication ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121892

RESUMO

The viscosity of gelatin methacryloyl (GelMA)-based bioinks generates shear stresses throughout the printing process that can affect cell integrity, reduce cell viability, cause morphological changes, and alter cell functionality. This study systematically investigated the impact of the viscosity of GelMA-gelatin bioinks on osteoblast-like cells in 2D and 3D culture conditions. Three bioinks with low, medium, and high viscosity prepared by supplementing a 5% GelMA solution with different concentrations of gelatin were evaluated. Cell responses were studied in a 2D environment after printing and incubation in non-cross-linked bioinks that caused the gelatin and GelMA to dissolve and release cells for attachment to tissue culture plates. The increased viscosity of the bioinks significantly affected cell area and aspect ratio. Cells printed using the bioink with medium viscosity exhibited greater metabolic activity and proliferation rate than those printed using the high viscosity bioink and even the unprinted control cells. Additionally, cells printed using the bioink with high viscosity demonstrated notably elevated expression levels of alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2) genes. In the 3D condition, the printed cell-laden hydrogels were photo-cross-linked prior to incubation. The medium viscosity bioink supported greater cell proliferation compared to the high viscosity bioink. However, there were no significant differences in the expression of osteogenic markers between the medium and high viscosity bioinks. Therefore, the choice between medium and high viscosity bioinks should be based on the desired outcomes and objectives of the bone tissue engineering application. Furthermore, the bioprinting procedure with the medium viscosity bioink was used as an automated technique for efficiently seeding cells onto 3D printed porous titanium scaffolds for bone tissue engineering purposes.

14.
Acta Biomater ; 183: 89-100, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38801867

RESUMO

Self-assembling peptide-based hydrogels have become a highly attractive scaffold for three-dimensional (3D) in vitro disease modeling as they provide a way to create tunable matrices that can resemble the extracellular matrix (ECM) of various microenvironments. Alzheimer's disease (AD) is an exceptionally complex neurodegenerative condition; however, our understanding has advanced due to the transition from two-dimensional (2D) to 3D in vitro modeling. Nonetheless, there is a current gap in knowledge regarding the role of amyloid structures, and previously developed models found long-term difficulty in creating an appropriate model involving the ECM and amyloid aggregates. In this report, we propose a multi-component self-assembling peptide-based hydrogel scaffold to mimic the amyloid-beta (ß) containing microenvironment. Characterization of the amyloid-ß-mimicking hydrogel (Col-HAMA-FF) reveals the formation of ß-sheet structures as a result of the self-assembling properties of phenylalanine (Phe, F) through π-π stacking of the residues, thus mimicking the amyloid-ß protein nanostructures. We investigated the effect of the amyloid-ß-mimicking microenvironment on healthy neuronal progenitor cells (NPCs) compared to a natural-mimicking matrix (Col-HAMA). Our results demonstrated higher levels of neuroinflammation and apoptosis markers when NPCs were cultured in the amyloid-like matrix compared to a natural brain matrix. Here, we provided insights into the impact of amyloid-like structures on NPC phenotypes and behaviors. This foundational work, before progressing to more complex plaque models, provides a promising scaffold for future investigations on AD mechanisms and drug testing. STATEMENT OF SIGNIFICANCE: In this study, we engineered two multi-component hydrogels: one to mimic the natural extracellular matrix (ECM) of the brain and one to resemble an amyloid-like microenvironment using a self-assembling peptide hydrogel. The self-assembling peptide mimics ß-amyloid fibrils seen in amyloid-ß protein aggregates. We report on the culture of neuronal progenitor cells within the amyloid-mimicking ECM scaffold to study the impact through marker expressions related to inflammation and DNA damage. This foundational work, before progressing to more complex plaque models, offers a promising scaffold for future investigations on AD mechanisms and drug testing.


Assuntos
Peptídeos beta-Amiloides , Hidrogéis , Células-Tronco Neurais , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos beta-Amiloides/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Fenótipo , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Animais
15.
Appl Mater Today ; 382024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006868

RESUMO

The conventional technique for successful bone grafts, involving the use of a patients own tissue (autografts), is challenged by limited availability and donor site morbidity. While allografts and xenografts offer alternatives, they come with the risk of rejection. This underscores the pressing need for tailor-made artificial bone graft materials. In this context, injectable hydrogels are emerging as a promising solution for bone regeneration, especially in complex maxillofacial reconstruction cases. These hydrogels can seamlessly adapt to irregular shapes and conservatively fill defects. Our study introduces a shear-thinning biomaterial by blending silicate nanoplatelets (SNs) enriched with human blood-derived plasma rich in growth factors (PRGF) for personalized applications. Notably, our investigations unveil that injectable hydrogel formulations comprising 7.5% PRGF yield sustained protein and growth factor release, affording precise control over critical growth factors essential for tissue regeneration. Moreover, our hydrogel exhibits exceptional biocompatibility in vitro and in vivo and demonstrates hemostatic properties. The hydrogel also presents a robust angiogenic potential and an inherent capacity to promote bone differentiation, proven through Alizarin Red staining, gene expression, and immunostaining assessments of bone-related biomarkers. Given these impressive attributes, our hydrogel stands out as a leading candidate for maxillofacial bone regeneration application. Beyond this, our findings hold immense potential in revolutionizing the field of regenerative medicine, offering an influential platform for crafting precise and effective therapeutic strategies.

16.
Aggregate (Hoboken) ; 5(2)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800607

RESUMO

mRNA therapy is the intracellular delivery of messenger RNA (mRNA) to produce desired therapeutic proteins. Developing strategies for local mRNA delivery is still required where direct intra-articular injections are inappropriate for targeting a specific tissue. The mRNA delivery efficiency depends on protecting nucleic acids against nuclease-mediated degradation and safe site-specific intracellular delivery. Herein, we report novel mRNA-releasing matrices based on RGD-moiety-rich gelatin methacryloyl (GelMA) microporous annealed particle (MAP) scaffolds. GelMA concentration in aerogel-based microgels (µgels) produced through a microfluidic process, MAP stiffnesses, and microporosity are crucial parameters for cell adhesion, spreading, and proliferation. After being loaded with mRNA complexes, MAP scaffolds composed of 10 % GelMA µgels display excellent cell viability with increasing cell infiltration, adhesion, proliferation, and gene transfer. The intracellular delivery is achieved by the sustained release of mRNA complexes from MAP scaffolds and cell adhesion on mRNA-releasing scaffolds. These findings highlight that hybrid systems can achieve efficient protein expression by delivering mRNA complexes, making them promising mRNA-releasing biomaterials for tissue engineering.

17.
JPhys Mater ; 7(1): 012502, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38144214

RESUMO

This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.

18.
Acta Biomater ; 173: 231-246, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465268

RESUMO

Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF.


Assuntos
Fístula Intestinal , Adesivos Teciduais , Humanos , Hidrogéis/farmacologia , Adesivos , Gelatina , Fístula Intestinal/terapia
19.
Adv Healthc Mater ; : e2302331, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359321

RESUMO

Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.

20.
Biomater Adv ; 157: 213739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154400

RESUMO

Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.


Assuntos
Hipersensibilidade ao Látex , Látex , Animais , Humanos , Alérgenos , Proteínas , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA