Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065062

RESUMO

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Assuntos
Leucemia , Síndromes Mielodisplásicas , Neoplasias , Metilação de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicas/genética , Neoplasias/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Metilação de RNA/genética
2.
Oncogene ; 41(1): 15-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508176

RESUMO

Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.


Assuntos
Sobrevivência Celular/genética , Melanoma/mortalidade , RNA Longo não Codificante/metabolismo , Neoplasias Uveais/mortalidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA