Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(1): 260-286, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385735

RESUMO

The INFOGEST protocol creation was a watershed for phenolic bioaccessibility studies. Because of this important initiative to standardize bioaccessibility studies, data comparisons between different laboratories are now expedited. It has been eight years since the INFOGEST protocol creation, and three from the latest update. However, the current status in terms of phenolic bioaccessibility and how far different laboratories are from reaching a consensus are still unrevealed. In this sense, this narrative review considered an evaluation of different studies that applied the INFOGEST protocol to investigate the bioaccessibility of phenolic compounds. The central objective was to compile the main findings and consensus and to identify possible gaps and future opportunities. This approach intends to further facilitate the use of this protocol by professionals in the field of food science and technology and related areas, generating a reflection on the actual level of standardization of the method. Despite the differences in phenolic compounds from diverse food matrices, and their peculiar behavior, some trends could be elucidated, in terms of phenolic release, stability, and/or transformation upon in vivo digestion. In contrast, there was no general consensus regarding sample preparation, how to report results and the form to calculate bioaccessibility, making it difficult to compare different studies. There is still a long road to effectively standardize the results obtained for phenolic bioaccessibility using the INFOGEST protocol, which is also an opportunity in terms of food analysis that can impact the food industry, especially for the development of nutraceuticals and functional foods.


Assuntos
Antioxidantes , Fenóis , Fenóis/análise , Antioxidantes/análise , Suplementos Nutricionais , Tecnologia de Alimentos , Análise de Alimentos , Literatura de Revisão como Assunto
2.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163892

RESUMO

Jua (juá in Portuguese) is an underexplored fruit from Brazil's northeast. This fruit is rich in antioxidant substances. However, there is a dearth of information about jua's bioactive potential. The present study evaluated two extraction methods (continuous agitation and ultrasound-assisted extraction-UAE) and employed three different solvents (water, ethanol, and acetone) to efficiently recover soluble phenolic compounds. Aqueous extracts obtained by UAE showed the highest total phenolic content (TPC) and antiradical activity. Besides being an eco-friendly procedure, extraction and/or solubility in an aqueous medium is also important for food application. Ellagic acids were the predominant phenolics (80%) found in aqueous jua pulp extract obtained by UAE, as determined by HPLC, while its TPC was 405.8 gallic acid equivalent per gram of fruit. This extract also exhibited a higher scavenging activity towards peroxyl radicals when compared to that of several other fruits from the literature, including grape, strawberry, cranberry, and walnuts, which are known references in terms of antioxidants. This is the first report that demonstrates jua pulp's potential as an alternative source of ellagic acid and other phenolic acids and flavonoids. Therefore, the outcome of this study provides new information that can be useful for functional food and nutraceutical industries.


Assuntos
Antioxidantes , Ziziphus , Antioxidantes/análise , Antioxidantes/farmacologia , Ácido Ascórbico , Brasil , Ácido Elágico , Extratos Vegetais , Polifenóis/análise , Água
3.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163956

RESUMO

The Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection. The grain yield was decreased by up to 25 times in 2019. The concentration of biochanin A was up to 3.2 times higher in samples from the second season (water stress). This study demonstrates that water stress induces biosynthesis of biochanin A. However, positive changes in the biochanin A concentration are overshadowed by negative changes in the grain yield. Therefore, water stress, which may be worsened by climate change in the upcoming years, may jeopardize both the production of chickpeas and the supply of biochanin A, a bioactive compound that can be used to produce dietary supplements and/or nutraceuticals.


Assuntos
Cicer/química , Cicer/metabolismo , Desidratação/metabolismo , Chile , Cromatografia Líquida , Cicer/crescimento & desenvolvimento , Mudança Climática/economia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flavonoides/metabolismo , Espectrometria de Massas , Fenóis/análise , Sementes/química
4.
Compr Rev Food Sci Food Saf ; 21(1): 272-295, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755935

RESUMO

Guarana (Paullinia cupana) is a plant from the Amazon region with cultural importance. Despite its early ancestral use by indigenous tribes, the first reports regarding the benefits of guarana consumption for human health were published in the 19th century. Since then, the use of guarana seed in powder and extract forms has been studied for its diverse effects on human health, such as stimulating, anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and anti-obesity effects. These effects are attributed to the high content of bioactive compounds found in guarana seeds, especially methylxanthines and flavonoids. In fact, the Brazilian Food Supplement Law has officially acknowledged guarana as a source of bioactive compounds. The number and diversity of studies focused on guarana and human health are increasing; thus, organizing and describing the available evidence on guarana and its applications is necessary to provide a framework for future studies. In this narrative review, we have organized the available information regarding guarana and its potential effects on human health. Guarana produces unique fruits with great potential for human health applications. However, the available evidence lacks human studies and mechanistic investigations. Future studies should be designed considering its applicability to human health, including intake levels and toxicity studies.


Assuntos
Paullinia , Humanos , Extratos Vegetais/farmacologia
5.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199457

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of contaminated food, which can occur during preparation and processing involving high temperatures (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, air, and water (i.e., environmental pollution). Differently from changes caused by microbiological characteristics and lipid oxidation, consumers cannot sensorially perceive PAH contamination in food products, thereby hindering their ability to reject these foods. Herein, the occurrence and biological effects of PAHs were comprehensively explored, as well as analytical methods to monitor their levels, legislations, and strategies to reduce their generation in food products. This review updates the current knowledge and addresses recent regulation changes concerning the widespread PAHs contamination in several types of food, often surpassing the concentration limits deemed acceptable by current legislations. Therefore, effective measures involving different food processing strategies are needed to prevent and reduce PAHs contamination, thereby decreasing human exposure and detrimental health effects. Furthermore, gaps in literature have been addressed to provide a basis for future studies.


Assuntos
Carcinogênese/efeitos dos fármacos , Poluição Ambiental/efeitos adversos , Alimentos/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Benzopirenos/efeitos adversos , Carcinogênese/genética , Carvão Vegetal/efeitos adversos , Culinária , Adutos de DNA/efeitos adversos , Análise de Alimentos , Manipulação de Alimentos , Humanos
6.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477281

RESUMO

A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.


Assuntos
Antioxidantes/química , Inibidores Enzimáticos/química , Flavonoides/química , Triticum/química , Animais , Humanos , Estudos Prospectivos
7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630023

RESUMO

Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.


Assuntos
Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Lipoxigenase/genética , Pigmentação/genética , Triticum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Lipoxigenase/metabolismo , Região do Mediterrâneo , Locos de Características Quantitativas , Triticum/enzimologia
8.
Molecules ; 25(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033416

RESUMO

The Brazilian Food Supplement Law recently recognized that guarana (Paullinia cupana) contains bioactive substances, hence supporting its role as a functional food ingredient. The health benefits of guarana are associated, at least in part, to its phenolic compounds. However, to the best of our knowledge, there is no literature addressing the presence of phenolic compounds in the fraction containing insoluble-bound compounds and its contribution in terms of alpha-glucosidase inhibition. The concentration of phenolic extracts released from the insoluble-bound fraction required to inhibit 50% of alpha-glucosidase (IC50) activity was 5.8-fold lower than that present in the soluble counterpart. Both fractions exhibited a mixed inhibition mode. Fourteen proanthocyanidins (dimers to tetramers) present in the insoluble-bound fraction were tentatively identified by MALDi-TOF-MS. Future studies aiming at increasing the concentration of the soluble counterpart are deemed necessary. The results presented here enhance the phenolic database of guarana and have a practical impact on the procurement of nutraceuticals and functional ingredients related to the prevention and/or management of type 2 diabetes. The Brazilian normative on food supplements has been recently revised. This study lends support to the future inclusion of guarana powder in the list of sources of proanthocyanidins for the industry of food supplements.


Assuntos
Cafeína/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Teobromina/farmacologia , Teofilina/farmacologia , Brasil , Cafeína/química , Suplementos Nutricionais , Humanos , Medicina Tradicional/métodos , Paullinia/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Teobromina/química , Teofilina/química , alfa-Glucosidases/efeitos dos fármacos
9.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146372

RESUMO

Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Cicer/química , Glycine max/química , Isoflavonas/análise , Compostos Fitoquímicos/análise , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Isoflavonas/química , Isoflavonas/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
10.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404239

RESUMO

Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.


Assuntos
Manipulação de Alimentos , Valor Nutritivo , Fenóis/química , Plantas/química , Opinião Pública , Vias Biossintéticas/genética , Descontaminação , Contaminação de Alimentos , Inocuidade dos Alimentos , Humanos , Plantas/genética , Plantas/metabolismo
11.
Int J Mol Sci ; 17(10)2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27775605

RESUMO

Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.


Assuntos
Antioxidantes/metabolismo , Dieta , Óleos de Plantas/química , Plantas Comestíveis/química , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Doenças Cardiovasculares/prevenção & controle , Humanos , Neoplasias/prevenção & controle , Sementes/química
12.
J Sci Food Agric ; 96(6): 1990-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26084730

RESUMO

BACKGROUND: Grape juice consumption may prevent several chronic diseases owing to the presence of phenolic compounds, which have an important role in the reduction of oxidative stress. This study investigated the polyphenol content and antioxidant activities of grape juices from two cultivars: BRS-Cora and Isabella. Total polyphenol content (TPC), anthocyanins, antioxidant capacity (oxygen radical absorbance capacity, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl), and phenolic profile (high-performance liquid chromatography with diode array and fluorescence detection--HPLC-DAD-FLD) were determined. RESULTS: BRS-Cora grape juice showed higher concentrations of total polyphenols and anthocyanins, as well as higher antioxidant potential, than those of Isabella grape juice. A significant positive correlation was found in TPC or anthocyanin contents when correlated with the remaining antioxidant assays. In addition, HPLC-DAD-FLD showed a higher total phenolic content in BRS-Cora grape juice compared to Isabella. CONCLUSION: The present results show BRS-Cora as a promising cultivar for grape juice production with an improved functional potential.


Assuntos
Bebidas/análise , Vitis/metabolismo , Antocianinas/química , Antioxidantes/química , Brasil , Análise de Alimentos , Polifenóis/química , Vitis/classificação , Vitis/genética
13.
Food Funct ; 15(12): 6304-6323, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38812411

RESUMO

The global prevalence of cancer continues to increase, so does its mortality. Strategies that can prevent/treat this condition are therefore required, especially low-cost and low-toxicity strategies. Bioactive compounds of plant origin have been presented as a good alternative. In this scenario, due to its abundant polyphenolic content (around 60 to 120 times greater than that of the grain), peanut skin by-products stand out as a sustainable source of food bioactives beneficial to human health. Investigated studies highlighted the importance of peanut skin for human health, its phytochemical composition, bioactivity and the potential for prevention and/or adjuvant therapy in cancer, through the advanced search for articles in the Virtual Health Library (VHL), Science direct and the Mourisco platform of the FioCruz Institute, from 2012 to 2022. Using the keywords, "peanut skin" AND "cancer" AND NOT "allergy", the words "peanut testa" and "peanut peel" were included replacing "peanut skin". 18 articles were selected from Plataforma Mourisco, 26 from Science Direct and 26 from VHL. Of these, 7 articles evaluated aspects of cancer prevention and/or treatment. Promising benefits were found in the prevention/treatment of chronic non-communicable diseases in the use of peanut and peanut skin extracts, such as cholesterolemia and glucose control, attenuation of oxidative stress and suppressive action on the proliferation and metabolism of cancer cells.


Assuntos
Arachis , Humanos , Arachis/química , Extratos Vegetais/farmacologia , Doenças não Transmissíveis/prevenção & controle , Compostos Fitoquímicos/farmacologia , Doença Crônica/prevenção & controle , Neoplasias/prevenção & controle , Animais
14.
Antioxidants (Basel) ; 12(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507896

RESUMO

Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.

15.
Food Chem ; 413: 135648, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791665

RESUMO

Germination has been regarded as a promising natural process to improve the antioxidant properties of mustard. However, there ís one question to be solved in this area: does germination improve mustard phenolics' bioaccessibility? The aim of this study was to answer this question by using INFOGEST protocol to simulate in vitro digestion. Resveratrol, formononetin and cryptochlorogenic acid were identified for the first time as evaluated by liquid chromatography-mass spectrometry. In general, digestion positively impacted the antioxidant potential of soluble phenolics from non-germinated and germinated grains, which were probably released from cell wall matrix by digestive enzymes. Although digestion seemed to nullify the antioxidant improvement caused by germination, phenolic quantities were distinctive. The main difference was found for sinapic acid, as its concentration reached a value 1.75-fold higher in germinated digested mustard compared to non-germinated. The results obtained suggested that germination improved the phenolic bioaccessibility of mustard grains, which encourages its use and investigations.


Assuntos
Antioxidantes , Mostardeira , Antioxidantes/química , Sementes/química , Fenóis/análise , Resveratrol/análise , Germinação
16.
Int J Mol Sci ; 13(9): 10935-10958, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109830

RESUMO

Peanut samples were irradiated (0.0, 5.2, 7.2 or 10.0 kGy), stored for a year (room temperature) and examined every three months. Mycotoxic fungi (MF) were detected in non-irradiated blanched peanuts. A dose of 5.2 kGy was found suitable to prevent MF growth in blanched samples. No MF was detected in in-shell peanuts, with or without irradiation. The colors of the control in-shell and blanched samples were, respectively, 44.72 and 60.21 (L *); 25.20 and 20.38 (Chroma); 53.05 and 86.46 (°Hue). The water activities (Aw) were 0.673 and 0.425. The corresponding fatty acids were 13.33% and 12.14% (C16:0), 44.94% and 44.92% (C18:1, ω9) and 37.10% and 37.63% (C18:2, ω6). The total phenolics (TP) were 4.62 and 2.52 mg GAE/g, with antioxidant activities (AA) of 16.97 and 10.36 µmol TEAC/g. Storage time negatively correlated with Aw (in-shell peanuts) or L *, linoleic acid, TP and AA (in-shell and blanched peanuts) but positively correlated with Aw (blanched peanuts), and with oleic acid (in-shell and blanched peanuts). Irradiation positively correlated with antioxidant activity (blanched peanuts). No correlation was found between irradiation and AA (in-shell samples) or fatty acids and TP (in-shell and blanched peanuts). Irradiation protected against MF and retained both the polyunsaturated fatty acids and polyphenols in the samples.


Assuntos
Arachis/microbiologia , Arachis/efeitos da radiação , Irradiação de Alimentos/métodos , Fungos/isolamento & purificação , Fungos/efeitos da radiação , Antioxidantes/análise , Arachis/química , Ácidos Graxos/análise , Raios gama , Micotoxicose/prevenção & controle , Fenóis/análise
17.
Int J Mol Sci ; 13(3): 2827-2845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489128

RESUMO

In-shell, peeled and blanched peanut samples were characterized in relation to proximate composition and fatty acid profile. No difference was found in relation to its proximate composition. The three major fatty acids were palmitic acid, oleic acid, and linoleic acid. In order to investigate irradiation and storage effects, peanut samples were submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and monitored every three months. Peanuts responded differently to irradiation, particularly with regards to tocopherol contents, primary and secondary oxidation products and oil stability index. Induction periods and tocopherol contents were negatively correlated with irradiation doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation sensitive and peeled samples were the most affected. A positive correlation was found among tocopherol contents and the induction period of the oils extracted from irradiated samples. Gamma radiation and storage time increased oxidation compounds production. If gamma radiation is considered an alternative for industrial scale peanut conservation, in-shell samples are the best feedstock. For the best of our knowledge this is the first article with such results; this way it may be helpful as basis for future studies on gamma radiation of in-shell crops.


Assuntos
Arachis/química , Arachis/efeitos da radiação , Raios gama , Tocoferóis/análise , Absorção de Radiação/efeitos da radiação , Ácidos Graxos/análise , Oxirredução/efeitos da radiação , Óleos de Plantas/química , Fatores de Tempo , Raios Ultravioleta
18.
Int J Mol Sci ; 13(3): 3073-3084, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489142

RESUMO

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.


Assuntos
Antioxidantes/análise , Antioxidantes/efeitos da radiação , Arachis/química , Arachis/efeitos da radiação , Flavonoides/análise , Flavonoides/efeitos da radiação , Irradiação de Alimentos , Raios gama , Extratos Vegetais/química , Extratos Vegetais/efeitos da radiação , Polifenóis/análise , Polifenóis/efeitos da radiação , Proantocianidinas/análise , Proantocianidinas/efeitos da radiação , Sementes/química , Sementes/efeitos da radiação , Óleo de Soja/química
19.
J Nutr Biochem ; 100: 108886, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670110

RESUMO

Oxidative stress is directly implicated in the loss of intestinal epithelial barrier function (IEBF) induced by non-steroidal anti-inflammatory drugs (NSAIDs). Previous studies by our research team demonstrated that 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (BZF), a quercetin oxidation metabolite that naturally occurs in onion peels, exhibits an antioxidant potency notably higher than quercetin. Thus, we assessed the potential of BZF and a BZF-rich onion peel aqueous extract (OAE) to protect against the loss of IEBF in Caco-2 cell monolayers and in rats exposed to indomethacin. In vitro, pure BZF and OAE standardized in BZF (100 nM), protected against the drop in transepithelial electrical resistance by 70 - 73%. Likewise, it prevented the increase in fluorescein-isothiocyanate labelled dextran (FITC-dextran) paracellular transport by 74% and oxidative stress by 84 - 86%. In vivo, BZF, given orally at a dose 80 µg/Kg bw as OAE, totally abolished a 30-fold increase in FITC-dextran serum concentration induced by indomethacin. This effect was dose-dependent and largely conserved (85%) when OAE was given 180-min prior to indomethacin. The IEBF-protective effect of OAE was accompanied by a full prevention of the NF-ĸB activation, and the increases in interleukine-8 secretion and myeloperoxidase activity induced by indomethacin. The protection was also associated with a 21-fold increase in Nrf2, and a 7-fold and 9-fold increase in heme oxygenase-1 and NAD(P)H-quinone oxidoreductase 1, respectively. The IEBF-protecting effect of OAE involves, most likely, its dual capacity to activate Nrf2 while inhibiting NF-ĸB activation. The extremely low doses of BZF needed to promote such actions warrants extending its IEBF-protective effects to other NSAIDs.


Assuntos
Benzofuranos/farmacologia , Indometacina/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Cebolas/química , Extratos Vegetais/farmacologia , Quercetina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Células CACO-2 , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/fisiologia , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/fisiologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Permeabilidade/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501323

RESUMO

Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA