Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 588(7836): 169-173, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33087935

RESUMO

Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.


Assuntos
Adenosina Desaminase/metabolismo , Elementos Alu/efeitos dos fármacos , Elementos Alu/genética , Decitabina/farmacologia , Decitabina/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Adenosina Desaminase/deficiência , Elementos Alu/imunologia , Animais , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , Ilhas de CpG/genética , DNA Intergênico/efeitos dos fármacos , DNA Intergênico/genética , DNA Intergênico/imunologia , DNA-Citosina Metilases/antagonistas & inibidores , Retroalimentação Fisiológica , Humanos , Imunidade Inata/efeitos dos fármacos , Helicase IFIH1 Induzida por Interferon/metabolismo , Íntrons/efeitos dos fármacos , Íntrons/genética , Íntrons/imunologia , Sequências Repetidas Invertidas/efeitos dos fármacos , Sequências Repetidas Invertidas/genética , Sequências Repetidas Invertidas/imunologia , Masculino , Camundongos , Mimetismo Molecular/efeitos dos fármacos , Mimetismo Molecular/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , RNA de Cadeia Dupla/efeitos dos fármacos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Vírus/efeitos dos fármacos , Vírus/imunologia
2.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726227

RESUMO

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Prognóstico , Biomarcadores , Interferons/uso terapêutico
4.
Cancer Cell Int ; 18: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483845

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm whose pathogenesis is linked to the Philadelphia chromosome presence that generates the BCR-ABL1 fusion oncogene. Tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM) dramatically improved the treatment efficiency and survival of CML patients by targeting BCR-ABL tyrosine kinase. The disease shows three distinct clinical-laboratory stages: chronic phase, accelerated phase and blast crisis. Although patients in the chronic phase respond well to treatment, patients in the accelerated phase or blast crisis usually show therapy resistance and CML relapse. It is crucial, therefore, to identify biomarkers to predict CML genetic evolution and resistance to TKI therapy, considering not only the effects of genetic aberrations but also the role of epigenetic alterations during the disease. Although dysregulations in epigenetic modulators such as histone methyltrasnferases have already been described for some hematologic malignancies, to date very limited data is available for CML, especially when considering the lysine methyltransferase MLL2/KMT2D and MLL3/KMT2C. METHODS: Here we investigated the expression profile of both genes in CML patients in different stages of the disease, in patients showing different responses to therapy with IM and in non-neoplastic control samples. Imatinib sensitive and resistant CML cell lines were also used to investigate whether treatment with other tyrosine kinase inhibitors interfered in their expression. RESULTS: In patients, both methyltransferases were either upregulated or with basal expression level during the chronic phase compared to controls. Interestingly, MLL3/KMT2C and specially MLL2/KMT2D levels decreased during disease progression correlating with distinct clinical stages. Furthermore, MLL2/KMT2D was decreased in patients resistant to IM treatment. A rescue in the expression of both MLL genes was observed in KCL22S, a CML cell line sensitive to IM, after treatment with dasatinib or nilotinib which was associated with a higher rate of apoptosis, an enhanced expression of p21 (CDKN1A) and a concomitant decrease in the expression of CDK2, CDK4 and Cyclin B1 (CCNB1) in comparison to untreated KCL22S control or IM resistant KCL22R cell line, which suggests involvement of p53 regulated pathway. CONCLUSION: Our results established a new association between MLL2/KMT2D and MLL3/KMT2C genes with CML and suggest that MLL2/KMT2D is associated with disease evolution and may be a potential marker to predict the development of therapy resistance.

5.
Acta Haematol ; 133(4): 354-364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25721555

RESUMO

BACKGROUND/AIMS: We investigated the effects of tyrosine kinase inhibitors (TKIs) on the expression of apoptosis-related genes (BCL-2 and death receptor family members) in chronic myeloid leukemia (CML) patients. METHODS: Peripheral blood mononuclear cells from 32 healthy subjects and 26 CML patients were evaluated before and after treatment with imatinib mesylate (IM) and dasatinib (DAS) by quantitative PCR. RESULTS: Anti-apoptotic genes (c-FLIP and MCL-1) were overexpressed and the pro-apoptotic BIK was reduced in CML patients. Expression of BMF, A1, c-FLIP, MCL-1, CIAP-2 and CIAP-1 was modulated by DAS. In IM-resistant patients, expression of A1, c-FLIP, CIAP-1 and MCL-1 was upregulated, and BCL-2, CIAP-2, BAK, BAX, BIK and FASL expression was downregulated. CONCLUSION: Taken together, our results point out that, in CML, DAS interferes with the apoptotic machinery regulation. In addition, the data suggest that apoptosis-related gene expression profiles are associated with primary resistance to IM.


Assuntos
Benzamidas/farmacologia , Benzamidas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Adulto , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Dasatinibe , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Transcriptoma
6.
Mediators Inflamm ; 2015: 786319, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26538835

RESUMO

Erythropoietin (EPO) is a key hormone involved in red blood cell formation, but its effects on nonerythroid cells, such as macrophages, have not been described. Macrophages are key cells in controlling histoplasmosis, a fungal infection caused by Histoplasma capsulatum (Hc). Considering that little is known about EPO's role during fungal infections and its capacity to activate macrophages, in this study we investigated the impact of EPO pretreatment on the alveolar immune response during Hc infection. The consequence of EPO pretreatment on fungal infection was determined by evaluating animal survival, fungal burden, activation of bronchoalveolar macrophages, inflammatory mediator release, and lung inflammation. Pretreatment with EPO diminished mononuclear cell numbers, increased the recruitment of F4/80(+)/CD80(+) and F4/80(+)/CD86(+) cells to the bronchoalveolar space, induced higher production of IFN-γ, IL-6, MIP-1α, MCP-1, and LTB4, reduced PGE2 concentration, and did not affect fungal burden. As a consequence, we observed an increase in lung inflammation with extensive tissue damage that might account for augmented mouse mortality after infection. Our results demonstrate for the first time that EPO treatment has a deleterious impact on lung immune responses during fungal infection.


Assuntos
Eritropoetina/metabolismo , Histoplasma/metabolismo , Histoplasmose/metabolismo , Histoplasmose/microbiologia , Inflamação , Animais , Apoptose , Líquido da Lavagem Broncoalveolar , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocinas/metabolismo , Regulação da Expressão Gênica , Interferon gama/metabolismo , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores do Leucotrieno B4/metabolismo , Proteínas Recombinantes/metabolismo , Baço/microbiologia
7.
Front Oncol ; 14: 1393191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779092

RESUMO

Tyrosine kinase inhibitors (TKI) have revolutionized the treatment of patients with chronic myeloid leukemia. Patients who achieve sustained deep molecular response are eligible for treatment discontinuation. DES-CML is an ongoing, phase 2 multicentric discontinuation trial. Adult patients with CML in chronic phase with typical BCR::ABL1 transcripts, stable deep molecular response (MR4.5 IS) for two years, and no previous resistance were eligible. Patients underwent a phase of TKI dose de-escalation for six months before discontinuation. TKI was reintroduced at the previous dose if the patient lost major molecular response (MMR) at any time. This study aimed to assess the impact of BCR-ABL transcript kinetics during TKI de-escalation and discontinuation phases on treatment-free survival. So far, the study recruited 41 patients, and 38 patients discontinued therapy (4 were in the second discontinuation attempt). Eleven patients lost MMR, one during the de-escalation phase and ten after discontinuation. 24-month treatment-free survival was 66% (95% CI: 48-84%) in a median follow-up of 7 (1-30) months. No patient lost hematological response or had disease progression. A higher rate of molecular relapses occurred in patients with fluctuating BCR::ABL1 levels after the discontinuation phase (with loss of MR4.5, but no loss of MMR) (P=0.04, HR-4.86 (1.03-22.9) but not confirmed in the multivariate analysis. The longer duration of TKI treatment (P=0.03, HR-1.02, 95%CI - 1.00-1.04) and MMR (P=0.004, HR-0.95, 95%CI - 0.92-098) were independent factors of a lower relapse rate.

8.
Exp Hematol ; : 104254, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871278

RESUMO

Sickle cell anemia (SCA) is characterized by immune system activation and heightened susceptibility to infections. We hypothesized that SCA patients exhibit transcriptional alterations in B-cell-related genes, impacting their peripheral B-cell compartment and leading to dysregulated humoral immunity and increased infection susceptibility. Our objective was to conduct an in silico analysis of whole blood transcriptomes from SCA patients and healthy controls obtained from public repositories. We aimed to identify alterations in the adaptive immune system and validate these findings in our own SCA patient cohort. Bioinformatic analyses unveiled significant transcriptional alterations in B-cell signatures, developmental pathways, and signaling pathways. These results were validated in peripheral blood mononuclear cells from our SCA patient cohort and controls using real-time polymerase chain reaction and flow cytometry. Ninety genes exhibited differential expression, with 70 upregulated and 20 downregulated. Dysregulation in the B-cell compartment of SCA patients was evident, characterized by increased frequencies of immature and naive B-cells, and decreased percentages of memory B-cell subsets compared with healthy controls. Our findings highlight previously unexplored transcriptional and quantitative alterations in peripheral B-cells among SCA patients. Understanding these changes sheds light on the mechanisms contributing to the heightened infection risk in this population. Future studies should delve deeper into these molecular changes to develop targeted interventions and therapeutic strategies aimed at mitigating infection susceptibility in individuals with SCA.

9.
Med Oncol ; 39(12): 223, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175590

RESUMO

Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN's pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Frequência do Gene , Humanos , Imunofenotipagem , Monócitos , Transtornos Mieloproliferativos/genética
10.
Front Immunol ; 13: 840173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493444

RESUMO

Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm that expresses the Philadelphia chromosome and constitutively activated Bcr-Abl tyrosine kinase in hematopoietic progenitor cells. Bcr-Abl tyrosine-kinase inhibitors (TKI) do not definitively cure all CML patients. The efficacy of TKI is reduced in CML patients in the blastic phase-the most severe phase of the disease-and resistance to this drug has emerged. There is limited knowledge on the underlying mechanisms of disease progression and resistance to TKI beyond BCR-ABL1, as well as on the impact of TKI treatment and disease progression on the metabolome of CML patients. The present study reports the metabolomic profiles of CML patients at different phases of the disease treated with TKI. The plasma metabolites from CML patients were analyzed using liquid chromatography, mass spectrometry, and bioinformatics. Distinct metabolic patterns were identified for CML patients at different phases of the disease and for those who were resistant to TKI. The lipid metabolism in CML patients at advanced phases and TKI-resistant patients is reprogrammed, as detected by analysis of metabolomic data. CML patients who were responsive and resistant to TKI therapy exhibited distinct enriched pathways. In addition, ceramide levels were higher and sphingomyelin levels were lower in resistant patients compared with control and CML groups. Taken together, the results here reported established metabolic profiles of CML patients who progressed to advanced phases of the disease and failed to respond to TKI therapy as well as patients in remission. In the future, an expanded study on CML metabolomics may provide new potential prognostic markers for disease progression and response to therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Biomarcadores , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Lipídeos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Med Oncol ; 39(5): 97, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35599283

RESUMO

Myeloproliferative neoplasms (MPN) are hematological disorders characterized by increased proliferation of precursor and mature myeloid cells. MPN patients may present driver mutations in JAK2, MPL, and CALR genes, which are essential to describe the molecular mechanisms of MPN pathogenesis. Despite all the new knowledge on MPN pathogenesis, many questions remain to be answered to develop effective therapies to cure MPN or impair its progression to acute myeloid leukemia. The present study examined the expression levels of the Hippo signaling pathway members in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), as well as the role that they play in disease pathogenesis. The Hippo pathway is a tumor suppressor pathway that participates in the regulation of cell proliferation, differentiation, and death. Our main finding was that the expression of tumor suppressor genes from Hippo pathway were downregulated and seemed to be associated with cell resistance to apoptosis and increased proliferation rate. Therefore, the decreased expression of Hippo pathway-related genes may contribute to the malignant phenotype, apoptosis resistance, and cell proliferation in MPN pathogenesis.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Calreticulina/genética , Via de Sinalização Hippo , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Receptores de Trombopoetina/genética
12.
J Clin Lab Anal ; 25(1): 47-51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21254243

RESUMO

BACKGROUND: Very few studies have investigated, in the elderly, the effect of rheumatic inflammatory states on phagocyte function and free radical production. The objective of this article is to evaluate phagocytosis by neutrophils and the production of nitric oxide (·NO) by monocytes in elderly women recruited among patients of the Brazilian Public Health System. METHODS: Forty patients aged more than 60 years with rheumatic inflammatory diseases were studied. Phagocytosis was measured by flow cytometry. ·NO production was measured by the total nitrite assay and conventional inflammation markers were determined. Data were analyzed with the Mann-Whitney nonparametric test and P<0.05 was considered significant. RESULTS: C-reactive protein levels and white blood cell counts were significantly higher in inflammation than in the control group (P<0.05). The phagocytosis fluorescence intensity per neutrophil and the percentual of neutrophils expressing phagocytosis were significantly higher (P<0.05) in the test than in the control group. Furthermore, there was significant ·NO overproduction by monocytes, (P<0.05). CONCLUSION: Phagocytosis and ·NO production are affected by rheumatic states. This suggests that the increased ·NO levels may play a part in the increased oxidative stress in rheumatic diseases in elderly women.


Assuntos
Monócitos/metabolismo , Neutrófilos/fisiologia , Óxido Nítrico/metabolismo , Fagocitose , Doenças Reumáticas/imunologia , Doenças Reumáticas/fisiopatologia , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/fisiopatologia , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/sangue , Contagem de Leucócitos , Monócitos/imunologia , Neutrófilos/imunologia , Nitritos/metabolismo , Osteoartrite/sangue , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Estresse Oxidativo/imunologia , Doenças Reumáticas/sangue , Doenças Reumáticas/metabolismo
13.
Front Oncol ; 11: 665037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084749

RESUMO

BACKGROUND: Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. METHODS: Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. RESULTS: The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1ß, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. CONCLUSIONS: Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.

14.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200123, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33354202

RESUMO

BACKGROUND: Resistance to apoptosis in chronic myeloid leukemia (CML) is associated with constitutive tyrosine kinase activity of the Bcr-Abl oncoprotein. The deregulated expression of apoptosis-related genes and alteration in epigenetic machinery may also contribute to apoptosis resistance in CML. Tyrosine kinase inhibitors target the Bcr-Abl oncoprotein and are used in CML treatment. The resistance of CML patients to tyrosine kinase inhibitors has guided the search for new compounds that may induce apoptosis in Bcr-Abl+ leukemic cells and improve the disease treatment. METHODS: In the present study, we investigated whether the L-amino acid oxidase isolated from Bothrops moojeni snake venom (BmooLAAO-I) (i) was cytotoxic to Bcr-Abl+ cell lines (HL-60.Bcr-Abl, K562-S, and K562-R), HL-60 (acute promyelocytic leukemia) cells, the non-tumor cell line HEK-293, and peripheral blood mononuclear cells (PBMC); and (ii) affected epigenetic mechanisms, including DNA methylation and microRNAs expression in vitro. RESULTS: BmooLAAO-I induced ROS production, apoptosis, and differential DNA methylation pattern of regulatory apoptosis genes. The toxin upregulated expression of the pro-apoptotic genes BID and FADD and downregulated DFFA expression in leukemic cell lines, as well as increased miR-16 expression - whose major predicted target is the anti-apoptotic gene BCL2 - in Bcr-Abl+ cells. CONCLUSION: BmooLAAO-I exerts selective antitumor action mediated by H2O2 release and induces apoptosis, and alterations in epigenetic mechanisms. These results support future investigations on the effect of BmooLAAO-I on in vivo models to determine its potential in CML therapy.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31384244

RESUMO

BACKGROUND: Breast cancer is the neoplasm with both the highest incidence and mortality rate among women worldwide. Given the known snake venom cytotoxicity towards several tumor types, we evaluated the effects of BthTX-I from Bothrops jararacussu on MCF7, SKBR3, and MDAMB231 breast cancer cell lines. METHODS: BthTX-I cytotoxicity was determined via MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay. Cell death was measured by a hypotonic fluorescent solution method, annexin-V-FITC/propidium iodide staining and by apoptotic/autophagic protein expression. Cancer stem cells (CSCs) were quantified by flow cytometry using anti-CD24-FITC and anti-CD44-APC antibodies and propidium iodide. RESULTS: BthTX-I at 102 µg/mL induced cell death in all cell lines. The toxin induced apoptosis in MCF7, SKBR3, and MDAMB231 in a dose-dependent manner, as confirmed by the increasing number of hypodiploid nuclei. Expression of pro-caspase 3, pro-caspase 8 and Beclin-1 proteins were increased, while the level of the antiapoptotic protein Bcl-2 was diminished in MCF7 cells. BthTX-I changed the staining pattern of CSCs in MDAMB231 cells by increasing expression of CD24 receptors, which mediated cell death. CONCLUSIONS: BthTX-I induces apoptosis and autophagy in all breast cancer cell lines tested and also reduces CSCs subpopulation, which makes it a promising therapeutic alternative for breast cancer.

16.
Stem Cells Int ; 2019: 6854080, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281380

RESUMO

Homoeostasis of bone marrow microenvironment depends on a precise balance between cell proliferation and death, which is supported by the cellular-extracellular matrix crosstalk. Multipotent mesenchymal stromal cells (MSC) are the key elements to provide the specialized bone marrow microenvironment by supporting, maintaining, and regulating the functions and fate of haematopoietic stem cells. Despite the great potential of MSC for cell therapy in several diseases due to their regenerative, immunomodulatory, and anti-inflammatory properties, they can also contribute to modulate tumor microenvironment. The extracellular vesicles that comprise exosomes and microvesicles are important mediators of intercellular communication due to their ability to change phenotype and physiology of different cell types. These vesicles may interact not only with neighbouring cells but also with cells from distant tissues to either maintain tissue homoeostasis or participate in disease pathogenesis. This review focuses on the current knowledge about the physiological role of MSC-extracellular vesicles, as well as their deregulation in haematological malignancies and their potential applications as biomarkers for diagnosis, progression, and treatment monitoring of such diseases.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30598659

RESUMO

BACKGROUND: Chronic myeloid leukemia (CML) is a BCR-ABL1 + myeloproliferative neoplasm marked by increased myeloproliferation and presence of leukemic cells resistant to apoptosis. The current first-line therapy for CML is administration of the tyrosine kinase inhibitors imatinib mesylate, dasatinib or nilotinib. Although effective to treat CML, some patients have become resistant to this therapy, leading to disease progression and death. Thus, the discovery of new compounds to improve CML therapy is still challenging. Here we addressed whether MjTX-I, a phospholipase A2 isolated from Bothrops moojeni snake venom, affects the viability of imatinib mesylate-resistant Bcr-Abl+ cell lines. METHODS: We examined the cytotoxic and pro-apoptotic effect of MjTX-I in K562-S and K562-R Bcr-Abl+ cells and in the non-tumor HEK-293 cell line and peripheral blood mononuclear cells, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the hypotonic fluorescent solution methods, associated with detection of caspases 3, 8, and 9 activation and poly (ADP-ribose) polymerase (PARP) cleavage. We also analyzed the MjTX-I potential to modulate the expression of apoptosis-related genes in K562-S and K562-R cells. RESULTS: MjTX-I decreased the viability of K562-S and K562-R cells by 60 to 65%, without affecting the viability of the non-tumor cells, i.e. it exerted selective cytotoxicity towards Bcr-Abl+ cell lines. In leukemic cell lines, the toxin induced apoptosis, activated caspases 3, 8, and 9, cleaved PARP, downregulated expression of the anti-apoptotic gene BCL-2, and upregulated expression of the pro-apoptotic gene BAD. CONCLUSION: The antitumor effect of MjTX-I is associated with its potential to induce apoptosis and cytotoxicity in Bcr-Abl positive cell lines sensitive and resistant to imatinib mesylate, indicating that MjTX-I is a promising candidate drug to upgrade the CML therapy.

18.
Med Oncol ; 35(3): 26, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29387948

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm resulting from clonal expansion of hematopoietic stem cells positive for the Philadelphia chromosome. The CML pathogenesis is associated with expression of the BCR-ABL1 oncogene, which encodes the Bcr-Abl protein with tyrosine kinase activity, promoting the leukemic cell exacerbated myeloproliferation and resistance to apoptosis. CML patients are usually treated with tyrosine kinase inhibitors (TKI), but some of them acquire resistance or are refractory to TKI. Thus, it is still relevant to elucidate the CML pathogenesis and seek new therapeutic targets, such as the Hippo signaling pathway and cell cycle regulatory genes from the Aurora kinase family. The present study quantified the expression level of genes encoding components of the Hippo signaling pathway (LATS1, LATS2, YAP, and TAZ), AURKA and AURKB in CML patients at different stages of the disease, who were resistant or sensitive to imatinib mesylate therapy, and in healthy individuals. The expression levels of the target genes were correlated with the CML Sokal's prognostic score. The most striking results were the LATS2 and AURKA overexpression in CML patients, the overexpression of TAZ and AURKB in CML patients at advanced phases and TAZ in CML IM-resistant. The development of drugs and/or identification of tumor markers for the Hippo signaling pathway and the Aurora kinase family, either alone or in combination, can optimize CML treatment by enhancing the susceptibility of leukemic cells to apoptosis and leading to a better disease prognosis.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Via de Sinalização Hippo , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Adulto Jovem
19.
Toxicon ; 120: 9-14, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27421670

RESUMO

Anti-apoptotic genes and apoptomiRs deregulated expression contribute to apoptosis resistance in chronic myeloid leukemia (CML) Bcr-Abl(+) cells. Here, the L-amino acid oxidase from Calloselasma rhodostoma (CR-LAAO) venom altered the apoptotic machinery regulation by modulating the expression of the miR-145, miR-26a, miR-142-3p, miR-21, miR-130a, and miR-146a, and of the apoptosis-related proteins Bid, Bim, Bcl-2, Ciap-2, c-Flip, and Mcl-1 in Bcr-Abl(+) cells. CR-LAAO is a potential tool to instigate apoptomiRs regulation that contributes to drive CML therapy.


Assuntos
Apoptose/efeitos dos fármacos , Venenos de Crotalídeos/enzimologia , Genes abl , L-Aminoácido Oxidase/metabolismo , MicroRNAs/efeitos dos fármacos , Animais , Apoptose/genética , Linhagem Celular Tumoral , Células HEK293 , Humanos , L-Aminoácido Oxidase/farmacologia , MicroRNAs/genética , Viperidae
20.
Int J Biol Macromol ; 86: 309-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812110

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the presence of the Bcr-Abl tyrosine kinase protein, which confers resistance to apoptosis in leukemic cells. Tyrosine kinase inhibitors (TKIs) are effectively used to treat CML; however, CML patients in the advanced (CML-AP) and chronic (CML-CP) phases of the disease are usually resistant to TKI therapy. Thus, it is necessary to seek for novel agents to treat CML, such as the enzyme l-amino acid oxidase from Calloselasma rhodostoma (CR-LAAO) snake venom. We examined the antitumor effect of CR-LAAO in Bcr-Abl(+) cell lines and peripheral blood mononuclear cells (PBMC) from healthy subjects and CML patients. CR-LAAO was more cytotoxic towards Bcr-Abl(+) cell lines than towards healthy subjects' PBMC. The H2O2 produced during the enzymatic action of CR-LAAO mediated its cytotoxic effect. The CR-LAAO induced apoptosis in Bcr-Abl(+) cells, as detected by caspases 3, 8, and 9 activation, loss of mitochondrial membrane potential, and DNA damage. CR-LAAO elicited apoptosis in PBMC from CML-CP patients without TKI treatment more strongly than in PBMC from healthy subjects and TKI-treated CML-CP and CML-AP patients. The antitumor effect of CR-LAAO against Bcr-Abl(+) cells makes this toxin a promising candidate to CML therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Venenos de Crotalídeos/enzimologia , Proteínas de Fusão bcr-abl/metabolismo , Peróxido de Hidrogênio/metabolismo , L-Aminoácido Oxidase/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Adulto , Antineoplásicos/uso terapêutico , Caspases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , L-Aminoácido Oxidase/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA