RESUMO
The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.
Assuntos
Anti-Infecciosos , Fluoretos , Humanos , Fluoretos/farmacologia , Aço Inoxidável , Fômites , Bactérias , Anti-Infecciosos/farmacologiaRESUMO
Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO2 oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT) using five bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species, E. coli, and S. maltophilia), and the viability of staphylococci and S. maltophilia also decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested. P. aeruginosa showed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure.IMPORTANCE This work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.
Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Titânio/farmacologia , Ligas , Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Flúor/química , Teste de Materiais , Nanoestruturas/química , Procedimentos Ortopédicos/métodos , Fósforo/química , Titânio/químicaRESUMO
We aimed to evaluate the release of two antibiotics: gentamicin and vancomycin loaded into F-doped nanotubular anodic oxide layers, as well as their bactericide effect. F-doped nanotubular oxide layers fabricated on Ti-6Al-4V loaded with gentamicin (Gm), vancomycin (Vm) and their mixture (Gm + Vm) by a previously described loading method. Antibiotic release was studied by RP-HPLC and by a biological method. Bactericidal activity was evaluated by a bacterial adherence protocol described previously using on three clinically important bacterial species. The antibiotic release steady up to 120 and 180 min for Gm and Vm, respectively, and despite the antibiotic concentration decreased, their biological activity was maintained over time. The number of living bacteria of three species tested on NT-Gm specimens was significantly lower than on NT specimens without antibiotics (P < 0.01). There are significant differences among NT-Gm and NT-Gm + Vm specimens (P < 0.05) for S. aureus 15981, S. epidermidis ATCC 35984, and P. aeruginosa ATCC 27853 and no differences between NT-Vm and NT-Gm + Vm for staphylococci (P > 0.05). In conclusion, this Gm + Vm loading method added to the properties of F-doped nanotubular oxide layers fabricated on Ti-6Al-4V, and therefore surfaces with antibacterial, biocompatible, tissue integration stimulating and spread-spectrum bactericidal properties can be obtained.
Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Gentamicinas/administração & dosagem , Nanotubos/química , Infecções Relacionadas à Prótese/prevenção & controle , Vancomicina/administração & dosagem , Ligas , Artroplastia , Aderência Bacteriana , Materiais Biocompatíveis , Cromatografia Líquida de Alta Pressão , Difusão , Humanos , Modelos Moleculares , Óxidos/química , Pseudomonas aeruginosa , Staphylococcus aureus , Staphylococcus epidermidis , Eletricidade Estática , Titânio/químicaRESUMO
Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.
Assuntos
Biofilmes/efeitos dos fármacos , Flúor/química , Titânio/química , Ligas/química , Antibacterianos/química , Candida albicans , Escherichia coli , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanotubos/química , Ortopedia , Porosidade , Pseudomonas aeruginosa , Staphylococcus aureus , Staphylococcus epidermidisRESUMO
Prosthetic joint infection is an uncommon entity, but it supposes high costs, both from the economic side to the health systems and from the emotional side of the patient. The evaluation of the bacterial adherence to different materials frequently involved in joint prostheses allows us to better understand the mechanisms underlying this and provide information for the future development of prevention strategies. This study evaluated the bacterial adherence of four different species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) on Ti6Al4V and CoCrMo. The topography, surface contact angles, and linear average roughness were measured in the samples from both alloys. The interaction with the surface of both alloys was significantly different, with the CoCrMo showing an aggregating effect on all the species, with additional anti-adherent activity in the case of Pseudomonas aeruginosa. The viability also changes, with a significant decrease (p < 0.05) in the CoCrMo alloy. In the case of S. epidermidis, the viability in the supernatant from the samples was different, too, with a decrease in the colony-forming units in the Ti6Al4V, which could be related to cation release from the surface. Beyond adhesion is a multifactorial and complex process, and considering that topography and wettability were similar, the chemical composition could play a main role in the different properties observed.
RESUMO
Prosthetic joint infection (PJI) is one of the most devastating complications in orthopedic surgery. One approach used to prevent PJI is local antibiotic therapy. This study evaluates the antibiotic release, in vitro cytocompatibility and in vivo effectiveness in preventing PJI caused by Staphylococcus aureus (S. aureus) of the fluorine- and phosphorus-doped, bottle-shaped, nanostructured (bNT) Ti-6Al-4V alloy loaded with a mixture of gentamicin and vancomycin (GV). We evaluated bNT Ti-6Al-4V loading with a mixture of GV, measuring the release of these antibiotics using high-performance liquid chromatography. Further, we describe bNT Ti-6Al-4V GV cytocompatibility and its efficacy against S. aureus using an in vivo rabbit model. GV was released from bNT Ti-6Al-4V following a Boltzmann non-linear model and maximum release values were obtained at 240 min for both antibiotics. The cell proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 (28%) and 168 h (68%), as did the matrix mineralization (52%) of these cells and the gene expression of three of the most important markers related to bone differentiation (more than threefold for VEGF and BGLAP, and 65% for RunX) on bNT Ti-6Al-4V GV compared with control. In vivo study results show that bNT Ti-6Al-4V GV can prevent S. aureus PJI according to histopathological and microbiological results. According to our results, bNT Ti-6Al-4V loaded with a mixture of GV using the soaking method is a promising biomaterial with favorable cytocompatibility and osteointegration, demonstrating local bactericidal properties against S. aureus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:588-597, 2020.
Assuntos
Gentamicinas/administração & dosagem , Próteses e Implantes , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Titânio/química , Vancomicina/administração & dosagem , Células 3T3 , Ligas , Animais , Antibacterianos/administração & dosagem , Diferenciação Celular , Proliferação de Células , Portadores de Fármacos , Flúor/farmacologia , Masculino , Camundongos , Nanopartículas/química , Osseointegração , Fósforo/farmacologia , Coelhos , Staphylococcus aureus/efeitos dos fármacosRESUMO
OBJECTIVE: Implant-related infection is a devastating complication in orthopedic surgery. Aiming to minimize this problem, many material modifications have been developed. Here we report a study of a surface modification of Ti-6 Al-4 V alloy using a methodology that enables the study of interactions between bacteria and the material in the presence of eukaryotic cells. METHODS: We mixed different concentrations of collection or clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells using a previously published methodology, analyzing the minimal concentration of bacteria able to colonize the surface of the material through image analysis. Ti-6 Al-4 V alloy was modified by anodization to obtain two F-doped nanostructured surfaces that have been previously described to have antibacterial properties. RESULTS: Our results show similar bacterial adhesion results to nanoporous and nanotubular F-doped surfaces. The presence of preosteoblastic cells increases the adherence of all bacterial strains to both structures. No effect of the surface on eukaryotic cells adherence was detected. CONCLUSION: To our knowledge, this is the first time that anin vitro study emulating the race for the surface evaluates and compares the osseointegration and antibacterial properties between two nanostructured- modified titanium alloy surfaces. Clinical strains show different behavior from collection ones in bacterial adherence. The presence of cells increased bacterial adherence. NP and NT surface modifications didn´t show significant differences in bacterial adhesion and preosteoblastic cells integration.
Assuntos
Aderência Bacteriana , Osteoblastos/citologia , Staphylococcus/citologia , Titânio/química , Células 3T3 , Ligas/química , Animais , Antibacterianos , Materiais Biocompatíveis/química , Técnicas de Cocultura , Teste de Materiais , Camundongos , Osseointegração , Propriedades de SuperfícieRESUMO
Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both associated with high morbidity and a substantial cost burden for patients and health systems. The development of a biomaterial capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. Using an in vivo rabbit model, this study evaluates the osseointegration effect of the fluorine (F)- and phosphorus (P)-doped bottle-shaped nanostructured (bNT) Ti-6Al-4V alloy and effectiveness of monitoring urine aluminum concentration to determine the presence of Pseudomonas aeruginosa infection in Ti-6Al-4V implants. Unlike chemically polished (CP) Ti-6Al-4V alloy implants, bNT Ti-6Al-4V alloy implants promoted osseointegration and showed effectiveness as a biomaterial marker. The bNT Ti-6Al-4V alloy implants were associated with a twofold increase in bone thickness and up to 15% greater bone density compared to the CP alloy. Additionally, bNT Ti-6Al-4V alloy implants allowed for discrimination between P. aeruginosa-infected and noninfected animals for 15 days postoperatively, as indicated by the decrease of aluminum concentration in urine, while this difference was only appreciable over the first 7 days when CP Ti-6Al-4V alloy implants were used. Therefore, bNT Ti-6Al-4V alloys could have clinical applications by detecting the infection and by avoiding aseptic loosening.
RESUMO
The Ti-6Al-4V alloy is one of the most commonly used in orthopedic surgery. Despite its advantages, there is an increasing need to use new titanium alloys with no toxic elements and improved biomechanical properties, such as Ti-13Nb-13Zr. Prosthetic joint infections (PJI) are mainly caused by Gram-positive bacteria; however, Gram-negative bacteria are a growing problem due to associated multidrug resistance. In this study, the bacterial adherence and viability on the Ti-13Nb-13Zr alloy have been compared to that of the Ti-6Al-4V alloy using 16 collection and clinical strains of bacterial species related to PJI: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. When compared with the Ti-6Al-4V alloy, bacterial adherence on the Ti-13Nb-13Zr alloy was significantly higher in most staphylococcal and P. aeruginosa strains and lower for E. coli strains. The proportion of live bacteria was significantly lower for both Gram-negative species on the Ti-13Nb-13Zr alloy than on the Ti-6Al-4V alloy pointing to some bactericidal effect of the Ti-13Nb-13Zr alloy. This bactericidal effect appears to be a consequence of the formation of hydroxyl radicals, since this effect is neutralized when dimethylsulfoxide was added to both the saline solution and water used to wash the stain. The antibacterial effect of the Ti-13Nb-13Zr alloy against Gram-negative bacteria is an interesting property useful for the prevention of PJI caused by these bacteria on this potential alternative to the Ti-6Al-4V alloy for orthopedic surgery.