Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Med Microbiol ; 305(4-5): 446-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25912807

RESUMO

E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli.


Assuntos
Técnicas Bacteriológicas/métodos , Escherichia coli/química , Escherichia coli/classificação , Shigella/química , Shigella/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Tipagem Molecular , Shigella/genética , Fatores de Tempo
2.
BMC Microbiol ; 14: 158, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24943244

RESUMO

BACKGROUND: Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an effective response to cholera outbreaks. RESULTS: The use of ferulic acid as a matrix in a new MALDI-TOF MS assay increased the measurable mass range of existing MALDI-TOF MS protocols for bacterial identification. The assay enabled rapid discrimination between epidemic V. cholerae O1/O139 strains and other less pathogenic V. cholerae strains. OmpU, an outer membrane protein whose amino acid sequence is highly conserved among epidemic strains of V. cholerae, appeared as a discriminatory marker in the novel MALDI-TOF MS assay. CONCLUSIONS: The extended mass range of MALDI-TOF MS measurements obtained by using ferulic acid improved the screening for biomarkers in complex protein mixtures. Differences in the mass of abundant homologous proteins due to variation in amino acid sequences can rapidly be examined in multiple samples. Here, a rapid MALDI-TOF MS assay was developed that could discriminate between epidemic O1/O139 strains and other less pathogenic V. cholerae strains based on differences in mass of the OmpU protein. It appeared that the amino acid sequence of OmpU from epidemic V. cholerae O1/O139 strains is unique and highly conserved.


Assuntos
Adesinas Bacterianas/análise , Técnicas Bacteriológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Vibrio cholerae/química , Vibrio cholerae/classificação , Cólera/diagnóstico , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Vibrio cholerae/isolamento & purificação
3.
Biosens Bioelectron ; 261: 116464, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861812

RESUMO

Recent findings on CRISPR-Cas enzymes with collateral DNAse/RNAse activity have led to new and innovative methods for pathogen detection. However, many CRISPR-Cas assays necessitate DNA pre-amplification to boost sensitivity, restricting their utility for point-of-care applications. Achieving higher sensitivity without DNA pre-amplification presents a significant challenge. In this study, we introduce a Terminal deoxynucleotidyl Transferase (TdT)-based amplification loop, creating a positive feedback mechanism within the CRISPR-Cas12a pathogen detection system. Upon recognizing pathogenic target DNA, Cas12a triggers trans-cleavage of a FRET reporter and a specific enhancer molecule oligonucleotide, indicated by the acronym POISER (Partial Or Incomplete Sites for crRNA recognition). POISER comprises half of a CRISPR-RNA recognition site, which is subsequently elongated by TdT enzymatic activity. This process, involving pathogen recognition-induced Cas12a cleavage and TdT elongation, results in a novel single-stranded DNA target. This target can subsequently be recognized by a POISER-specific crRNA, activating more Cas12a enzymes. Our study demonstrates that these POISER-cycles enhance the signal strength in fluorescent-based CRISPR-Cas12a assays. Although further refinement is desirable, POISER holds promise as a valuable tool for the detection of pathogens in point-of-care testing, surveillance, and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Técnicas Biossensoriais/métodos , Proteínas Associadas a CRISPR/genética , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/metabolismo , Endodesoxirribonucleases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas de Bactérias/genética , Humanos
4.
BMC Microbiol ; 11: 267, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22192890

RESUMO

BACKGROUND: The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays. RESULTS: In this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences. CONCLUSIONS: MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Brucella/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Brucella/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/genética , Genoma Bacteriano , Repetições Minissatélites , Proteoma/análise , Especificidade da Espécie
5.
J Microbiol Methods ; 68(1): 26-31, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16857281

RESUMO

The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with biotin. Tagged proteins were visualised through streptavidin probing of Western blots. Seven biotinylated proteins of Y. pestis were identified including two porins and the putative virulence factor catalase peroxidase.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Yersinia pestis/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Biotinilação , Western Blotting , Eletroforese em Gel Bidimensional , Peste/microbiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Virol Methods ; 213: 75-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25500183

RESUMO

The rapid identification of existing and emerging respiratory viruses is crucial in combating outbreaks and epidemics. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reliable identification method in bacterial diagnostics, but has not been used in virological diagnostics. Mass spectrometry systems have been investigated for the identification of respiratory viruses. However, sample preparation methods were laborious and time-consuming. In this study, a reliable and rapid sample preparation method was developed allowing identification of cultured respiratory viruses. Tenfold serial dilutions of ten cultures influenza A strains, mixed samples of influenza A virus with human metapneumovirus or respiratory syncytial virus, and reconstituted clinical samples were treated with the developed sample preparation method. Subsequently, peptides were subjected to MALDI-TOF MS and liquid chromatography tandem mass spectrometry (LC-MS/MS). The influenza A strains were identified to the subtype level within 3h with MALDI-TOF MS and 6h with LC-MS/MS, excluding the culturing time. The sensitivity of LC-MS/MS was higher compared to MALDI-TOF MS. In addition, LC-MS/MS was able to discriminate between two viruses in mixed samples and was able to identify virus from reconstituted clinical samples. The development of an improved and rapid sample preparation method allowed generic and rapid identification of cultured respiratory viruses by mass spectrometry.


Assuntos
Espectrometria de Massas/métodos , Infecções Respiratórias/diagnóstico , Manejo de Espécimes/métodos , Viroses/diagnóstico , Vírus/classificação , Vírus/isolamento & purificação , Humanos , Vírus da Influenza A , Influenza Humana , Metapneumovirus , Vírus Sinciciais Respiratórios , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Fatores de Tempo , Viroses/virologia , Vírus/química
7.
J Chromatogr A ; 1035(1): 97-114, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15117079

RESUMO

In a follow-up of the earlier characterisation of botulinum toxins type A and B (BTxA and BTxB) by mass spectrometry (MS), types C, D, E, and F (BTxC, BTxD, BTxE, BTxF) were now investigated. Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxC, BTxD, BTxE, and BTxF are comprised of a protein complex of the respective neurotoxins with non-toxic non-haemagglutinin (NTNH) and, sometimes, specific haemagglutinins (HA). These protein complexes were observed in mass spectrometric identification. The BTxC complex, from Clostridium botulinum strain 003-9, consisted of a 'type C1 and D mosaic' toxin similar to that of type C strain 6813, a non-toxic non-hemagglutinating and a 33 kDa hemagglutinating (HA-33) component similar to those of strain C-Stockholm, and an exoenzyme C3 of which the sequence was in full agreement with the known genetic sequence of strain 003-9. The BTxD complex, from C. botulinum strain CB-16, consisted of a neurotoxin with the observed sequence identical with that of type D strain BVD/-3 and of an NTNH with the observed sequence identical with that of type C strain C-Yoichi. Remarkably, the observed protein sequence of CB-16 NTNH differed by one amino acid from the known gene sequence: L859 instead of F859. The BTxE complex, from a C. botulinum isolated from herring sprats, consisted of the neurotoxin with an observed sequence identical with that from strain NCTC 11219 and an NTNH similar to that from type E strain Mashike (1 amino acid difference with observed sequence). BTxF, from C. botulinum strain Langeland (NCTC 10281), consisted of the neurotoxin and an NTNH; observed sequences from both proteins were in agreement with the gene sequence known from strain Langeland. As with BTxA and BTxB, matrix-assisted laser desorption/ionisation (MALDI) MS provided provisional identification from trypsin digest peptide maps and liquid chromatography-electrospray (tandem) mass spectrometry (LC-ES MS) afforded unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin digestion.


Assuntos
Toxinas Botulínicas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Mapeamento de Peptídeos
8.
J Chromatogr A ; 970(1-2): 95-115, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12350104

RESUMO

A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB are comprised of a protein complex of the respective neurotoxins with specific haemagglutinins (HAs) and non-toxic non-haemagglutinins (NTNHs). These protein complexes are also observed in mass spectrometric identification. The particular BTxA complex, from Clostridium botulinum strain 62A, almost completely matched database data derived from genetic sequences known for this strain. Although no such database information was available for BTxB, from C. botulinum strain okra, all protein sequences from the complex except that of HA-70 were found to match proteins known from other type B strains. It was found that matrix-assisted laser desorption ionisation MS provides provisional identification from trypsin digest peptide maps and that liquid chromatography electrospray (tandem) mass spectrometry affords unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin or pepsin digestion.


Assuntos
Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Pepsina A/química , Homologia de Sequência de Aminoácidos , Tripsina/química
9.
J Proteome Res ; 5(8): 2033-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16889427

RESUMO

Manual spot excision for protein identification from fluorescent stained two-dimensional (2-D) gels is hard to accomplish. Here, we explore the use of ProteomIQ Blue as a post-stain method for the visualization of fluorescent stained/labeled proteins. We show that ProteomIQ Blue post-staining is almost as sensitive as staining with SYPRO Ruby or cyanine dyes alone. More than 90% of the protein spots that are stained with the fluorescent stains are still detectable with ProteomIQ Blue. In protein identification by mass spectrometry, ProteomIQ Blue post-stained spots provide high sensitivity and high protein sequence coverage of the peptide mass maps in both MALDI-TOF-MS and ESI-MS/MS analyses. In conclusion, post-staining of fluorescent stained gels with ProteomIQ Blue provides a facile and a powerful method to achieve quantitative protein analysis as well as protein identification in the same semianalytical gel without requiring sophisticated/expensive robotic equipment.


Assuntos
Proteínas de Bactérias/química , Corantes/química , Eletroforese em Gel Bidimensional/métodos , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Proteínas de Bactérias/metabolismo , Carbocianinas/química , Compostos Organometálicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Environ Microbiol ; 8(9): 1674-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16913927

RESUMO

The aim of this study was to assess the cellular response of the solvent-tolerant Pseudomonas putida S12 to toluene as the single effector. Proteomic analysis (two-dimensional difference-in-gel-electrophoresis) was used to assess the response of P. putida S12 cultured in chemostats. This approach ensures constant growth conditions, both in the presence and absence of toluene. A considerable negative effect of toluene on the cell yield was found. The need for energy in the defence against toluene was reflected by differentially expressed proteins for cell energy management. In toluene-stressed cells the balance between proton motive force (PMF) enforcing and dissipating systems was shifted. NAD(P)H generating systems were upregulated whereas the major proton-driven system, ATP synthase, was downregulated. Other differentially expressed proteins were identified: outer membrane proteins, transport proteins, stress-related proteins and translation-related proteins. In addition, a protein with no assigned function was found. This study yielded a more detailed view of the effect of toluene on the intracellular energy management of P. putida S12 and several novel leads have been obtained for further targeted investigations.


Assuntos
Proteínas de Bactérias/metabolismo , Proteoma/análise , Pseudomonas putida/efeitos dos fármacos , Tolueno/toxicidade , Reatores Biológicos/microbiologia , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Pseudomonas putida/metabolismo , Tolueno/metabolismo
11.
Anal Chem ; 77(6): 1545-55, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15762556

RESUMO

The protein toxin ricin, which originates from the seeds of Ricinus communis plants, has been the subject of increased interest, due to its potential terrorist use. Exceptionally, this toxin is also subject to the Chemical Weapons Convention. In this paper, it is shown that mass spectrometry can be used to unambiguously verify the presence of ricin in crude toxin preparations. It is demonstrated that MALDI MS can be used for screening, either by direct analysis or by trypsin digestion and peptide mapping. Purified ricin from several varieties of R. communis was characterized by LC-ES MS(/MS). A crude ricin preparation from a single bean was similarly characterized. An LC method was set up with product ion MS/MS detection of selected marker peptides specific for ricin: T5, T7, T11, T12, and T13 from the A-chain and T3, T5, T14, T19, and T20 from the B-chain. This method was then used to unambiguously identify ricin in a crude preparation of ricin. The MALDI MS molecular weight analysis and the marker peptides LC-ES MS/MS analysis give a forensic level of identification of ricin when combined with activity testing.


Assuntos
Extratos Vegetais/análise , Ricina/análise , Ricinus communis/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Medicina Legal , Dados de Sequência Molecular , Ricina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA