Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2304683, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649200

RESUMO

The addition of Pt generally promotes the reduction of Co3 O4 in supported catalysts, which further improves their activity and selectivity. However, due to the limited spatial resolution, how Pt and its location and distribution affect the reduction of Co3 O4 remains unclear. Using ex situ and in situ ambient pressure scanning transmission electron microscopy, combined with temperature-programmed reduction, the reduction of silica-supported Co3 O4 without Pt and with different location and distribution of Pt is studied. Shrinkage of Co3 O4 nanoparticles is directly observed during their reduction, and Pt greatly lowers the reduction temperature. For the first time, the initial reduction of Co3 O4 with and without Pt is studied at the nanoscale. The initial reduction of Co3 O4 changes from surface to interface between Co3 O4 and SiO2 . Small Pt nanoparticles located at the interface between Co3 O4 and SiO2 promote the reduction of Co3 O4 by the detachment of Co3 O4 /CoO from SiO2 . After reduction, the Pt and part of the Co form an alloy with Pt well dispersed. This study for the first time unravels the effects of Pt location and distribution on the reduction of Co3 O4 nanoparticles, and helps to design cobalt-based catalysts with efficient use of Pt as a reduction promoter.

2.
Small ; : e2401009, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552229

RESUMO

Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H2/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.

3.
Nature ; 528(7581): 245-8, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26659185

RESUMO

The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

4.
Angew Chem Int Ed Engl ; 60(32): 17735-17743, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101971

RESUMO

The catalytic performance of composite catalysts is not only affected by the physicochemical properties of each component, but also the proximity and interaction between them. Herein, we employ four representative oxides (In2 O3 , ZnO, Cr2 O3 , and ZrO2 ) to combine with H-ZSM-5 for the hydrogenation of CO2 to hydrocarbons directed by methanol intermediate and clarify the correlation between metal migration and the catalytic performance. The migration of metals to zeolite driven by the harsh reaction conditions can be visualized by electron microscopy, meanwhile, the change of zeolite acidity is also carefully characterized. The protonic sites of H-ZSM-5 are neutralized by mobile indium and zinc species via a solid ion-exchange mechanism, resulting in a drastic decrease of C2+ hydrocarbon products over In2 O3 /H-ZSM-5 and ZnO/H-ZSM-5. While, the thermomigration ability of chromium and zirconium species is not significant, endowing Cr2 O3 /H-ZSM-5 and ZrO2 /H-ZSM-5 catalysts with high selectivity of C2+ hydrocarbons.

5.
Angew Chem Int Ed Engl ; 59(9): 3592-3600, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31863705

RESUMO

Improving product selectivity by controlling the spatial organization of functional sites at the nanoscale is a critical challenge in bifunctional catalysis. We present a series of composite bifunctional catalysts consisting of one-dimensional zeolites (ZSM-22 and mordenite) and a γ-alumina binder, with platinum particles controllably deposited either on the alumina binder or inside the zeolite crystals. The hydroisomerization of n-heptane demonstrates that the catalysts with platinum particles on the binder, which separates platinum and acid sites at the nanoscale, leads to a higher yield of desired isomers than catalysts with platinum particles inside the zeolite crystals. Platinum particles within the zeolite crystals impose pronounced diffusion limitations on reaction intermediates, which leads to secondary cracking reactions, especially for catalysts with narrow micropores or large zeolite crystals. These findings extend the understanding of the "intimacy criterion" for the rational design of bifunctional catalysts for the conversion of low-molecular-weight reactants.

6.
Small ; 13(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27735131

RESUMO

Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid.

7.
J Am Chem Soc ; 138(10): 3433-42, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26891132

RESUMO

The understanding of processes leading to the formation of nanometer-sized particles is important for tailoring of their size, shape and location. The growth mechanisms and kinetics of nanoparticles from solid precursors are, however, often poorly described. Here we employ transmission electron microscopy (TEM) to examine the formation of copper nanoparticles on a silica support during the reduction by H2 of homogeneous copper phyllosilicate platelets, as a prototype precursor for a coprecipitated catalyst. Specifically, time-lapsed TEM image series acquired of the material during the reduction process provide a direct visualization of the growth dynamics of an ensemble of individual nanoparticles and enable a quantitative evaluation of the nucleation and growth of the nanoparticles. This quantitative information is compared with kinetic models and found to be best described by a nucleation-and-growth scenario involving autocatalytic reduction of the copper phyllosilicate followed by diffusion-limited or reaction-limited growth of the copper nanoparticles. The plate-like structure of the precursor restricted the diffusion of copper and the autocatalytic reduction limited the probability for secondary nucleation. The combination of a uniform size of precursor particles and the autocatalytic reduction thus offers means to synthesize nanoparticles with well-defined sizes in large amounts. In this way, in situ observations made by electron microscopy provide mechanistic and kinetic insights into the formation of supported nanoparticles, essential for the rational design of nanomaterials.

8.
Nat Mater ; 19(1): 5-6, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844274
9.
Chem Soc Rev ; 44(20): 7234-61, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26007224

RESUMO

Recently the concept of hierarchical zeolites invoked more explicit attention to enhanced accessibility of zeolites. By realizing additional meso-/macroporosity with the intrinsic microporosity of zeolites, a hierarchical pore system arises which facilitates mass transport while maintaining the zeolite shape selectivity. A great number of synthesis strategies have been developed for tailoring the pore architecture of hierarchical zeolites. In this review, we give a general overview of different synthesis methods for introduction of additional porosity. Advantages and limitations of these different synthesis approaches are addressed. The assessment of pore structure is essential to build the link between the zeolite pore structure and its functionality. A variety of 2D and 3D microscopy techniques are crucial to visualize the hierarchical pore structure, providing unique and comprehensive information that, however, should be linked to the results of bulk characterization techniques as much as possible. The microscopy techniques are classified and discussed according to the different probes used, such as optical light, X-rays and electrons. Representative work is reviewed to elucidate the capability of each technique and their drawbacks.

10.
Angew Chem Int Ed Engl ; 54(40): 11804-8, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26259539

RESUMO

The properties of many functional materials depend critically on the spatial distribution of an active phase within a support. In the case of solid catalysts, controlling the spatial distribution of metal (oxide) nanoparticles at the mesoscopic scale offers new strategies to tune their performance and enhance their lifetimes. However, such advanced control requires suitable characterization methods, which are currently scarce. Here, we show how the background in small-angle X-ray scattering patterns can be analyzed to quantitatively access the mesoscale distribution of nanoparticles within supports displaying hierarchical porosity. This is illustrated for copper catalysts supported on meso- and microporous silica displaying distinctly different metal distributions. Results derived from X-ray scattering are in excellent agreement with electron tomography. Our strategy opens unprecedented prospects for understanding the properties and to guide the synthesis of a wide array of functional nanomaterials.

11.
J Am Chem Soc ; 136(20): 7333-40, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24801898

RESUMO

The proximity of nanoparticles may affect the performance, in particular the stability, of supported metal catalysts. Short interparticle distances often arise during catalyst preparation by formation of aggregates. The cause of aggregation of cobalt nanoparticles during the synthesis of highly loaded silica-supported catalysts was found to originate from the drying process after impregnation of the silica grains with an aqueous cobalt nitrate precursor. Maximal spacing of the Co3O4 nanoparticles was obtained by fluid-bed drying at 100 °C in a N2 flow. Below this temperature, redistribution of liquid occurred before and during precipitation of a solid phase, leading to aggregation of the cobalt particles. At higher temperatures, nucleation and growth of Co3O4 occurred during the drying process also giving rise to aggregation. Fischer-Tropsch catalysis performed under industrially relevant conditions for unpromoted and Pt-promoted cobalt catalysts revealed that the size of aggregates (13-80 nm) of Co particles (size ~9 nm) had little effect on activity. Large aggregates exhibited higher selectivities to long chain alkanes, possibly related to higher olefin formation with subsequent readsorption and secondary chain growth. Most importantly, larger aggregates of Co particles gave rise to extensive migration of cobalt (up to 75%) to the external surface of the macroscopic catalyst grains (38-75 µm). Although particle size did not increase inside the silica support grains, migration of cobalt to the external surface partly led to particle growth, thus causing a loss of activity. This cobalt migration over macroscopic length scales was suppressed by maximizing the distance between nanoparticles over the support. Clearly, the nanoscale distribution of particles is an important design parameter of supported catalysts in particular and functional nanomaterials in general.

12.
Nat Mater ; 12(1): 34-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142841

RESUMO

Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al(2)O(3) catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.

13.
Angew Chem Int Ed Engl ; 53(36): 9493-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044071

RESUMO

A major cause of supported metal catalyst deactivation is particle growth by Ostwald ripening. Nickel catalysts, used in the methanation reaction, may suffer greatly from this through the formation of [Ni(CO)4 ]. By analyzing catalysts with various particle sizes and spatial distributions, the interparticle distance was found to have little effect on the stability, because formation and decomposition of nickel carbonyl rather than diffusion was rate limiting. Small particles (3-4 nm) were found to grow very large (20-200 nm), involving local destruction of the support, which was detrimental to the catalyst stability. However, medium sized particles (8 nm) remained confined by the pores of the support displaying enhanced stability, and an activity 3 times higher than initially small particles after 150 h. Physical modeling suggests that the higher [Ni(CO)4 ] supersaturation in catalysts with smaller particles enabled them to overcome the mechanical resistance of the support. Understanding the interplay of particle size and support properties related to the stability of nanoparticles offers the prospect of novel strategies to develop more stable nanostructured materials, also for applications beyond catalysis.

14.
Angew Chem Int Ed Engl ; 53(25): 6397-401, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24827541

RESUMO

Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

15.
J Phys Chem C Nanomater Interfaces ; 127(32): 15766-15774, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609377

RESUMO

Since recently, gas-cell transmission electron microscopy allows for direct, nanoscale imaging of catalysts during reaction. However, often systems are too perturbed by the imaging conditions to be relevant for real-life catalyzed conversions. We followed carbon nanofiber growth from NiCu-catalyzed methane decomposition under working conditions (550 °C, 1 bar of 5% H2, 45% CH4, and 50% Ar), directly comparing the time-resolved overall carbon growth rates in a reactor (measured gravimetrically) and nanometer-scale carbon growth observations (by electron microscopy). Good quantitative agreement in time-dependent growth rates allowed for validation of the electron microscopy measurements and detailed insight into the contribution of individual catalyst nanoparticles in these inherently heterogeneous catalysts to the overall carbon growth. The smallest particles did not contribute significantly to carbon growth, while larger particles (8-16 nm) exhibited high carbon growth rates but deactivated quickly. Even larger particles grew carbon slowly without significant deactivation. This methodology paves the way to understanding macroscopic rates of catalyzed reactions based on nanoscale in situ observations.

16.
J Am Chem Soc ; 134(39): 16207-15, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22953753

RESUMO

The Fischer-Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber supported catalysts on the conversion of synthesis gas has been investigated at 340-350 °C, H(2)/CO = 1, and pressures of 1 and 20 bar. The surface-specific activity (apparent TOF) based on the initial activity of unpromoted catalysts at 1 bar increased 6-8-fold when the average iron carbide size decreased from 7 to 2 nm, while methane and lower olefins selectivity were not affected. The same decrease in particle size for catalysts promoted by Na plus S resulted at 20 bar in a 2-fold increase of the apparent TOF based on initial activity which was mainly caused by a higher yield of methane for the smallest particles. Presumably, methane formation takes place at highly active low coordination sites residing at corners and edges, which are more abundant on small iron carbide particles. Lower olefins are produced at promoted (stepped) terrace sites that are available and active, quite independent of size. These results demonstrate that the iron carbide particle size plays a crucial role in the design of active and selective FTO catalysts.

17.
Nat Mater ; 16(1): 7-8, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27994239
18.
Chem Rev ; 115(14): 6687-718, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26088402
19.
Angew Chem Int Ed Engl ; 51(29): 7190-3, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22693165

RESUMO

Pressure leverage: A tapered-element oscillating microbalance was used to evaluate carbon deposition on a highly selective and active supported iron catalyst for the production of lower olefins. With increasing pressure, the H(2)/CO ratio had a profound effect on the carbon deposition rate and accordingly, conditions leading to minimal carbon deposition, low methane selectivity, and high olefin selectivity were identified.

20.
ChemCatChem ; 14(19): e202200451, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36605570

RESUMO

In this work, we discuss the role of manganese oxide as a promoter in Cu catalysts supported on graphitic carbon during hydrogenation of CO2 and CO. MnOx is a selectivity modifier in an H2/CO2 feed and is a highly effective activity promoter in an H2/CO feed. Interestingly, the presence of MnOx suppresses the methanol formation from CO2 (TOF of 0.7 ⋅ 10-3 s-1 at 533 K and 40 bar) and enhances the low-temperature reverse water-gas shift reaction (TOF of 5.7 ⋅ 10-3 s-1) with a selectivity to CO of 87 %C. Using time-resolved XAS at high temperatures and pressures, we find significant absorption of CO2 to the MnO, which is reversed if CO2 is removed from the feed. This work reveals fundamental differences in the promoting effect of MnOx and ZnOx and contributes to a better understanding of the role of reducible oxide promoters in Cu-based hydrogenation catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA