RESUMO
Clocking of electronically and vibrationally state-resolved channels of the fast photodissociation of CH3I in the A-band is re-examined in a combined experimental and theoretical study. Experimentally, a femtosecond pump-probe scheme is employed in the modality of resonant probing by resonance enhanced multiphoton ionization (REMPI) of the methyl fragment in different vibrational states and detection through fragment velocity map ion (VMI) imaging as a function of the time delay. We revisit excitation to the center of the A-band at 268 nm and report new results for excitation to the blue of the band center at 243 nm. Theoretically, two approaches have been employed to shed light into the observations: first, a reduced dimensionality 4D nonadiabatic wavepacket calculation using the potential energy surfaces by Xie et al. [J. Phys. Chem. A 104, 1009 (2000)]; and second, a full dimension 9D trajectory surface-hopping calculation on the same potential energy surfaces, including the quantization of vibrational states of the methyl product. In addition, high level ab initio electronic structure calculations have been carried out to describe the CH3 3pz Rydberg state involved in the (2 + 1) REMPI probing process, as a function of the carbon-iodine (C-I) distance. A general qualitative agreement is obtained between experiment and theory, but the effect of methyl vibrational excitation in the umbrella mode on the clocking times is not well reproduced. The theoretical results reveal that no significant effect on the state-resolved appearance times is exerted by the nonadiabatic crossing through the conical intersection present in the first absorption band. The vibrationally state resolved clocking times observed experimentally can be rationalized when the (2 + 1) REMPI probing process is considered. None of the other probing methods applied thus far, i.e., multiphoton ionization photoelectron spectroscopy, soft X-ray inner-shell photoelectron spectroscopy, VUV single-photon ionization, and XUV core-to-valence transient absorption spectroscopy, have been able to provide quantum state-resolved (vibrational) clocking times. More experiments would be needed to disentangle the fine details in the clocking times and dissociation dynamics arising from the detection of specific quantum-states of the molecular fragments.
RESUMO
The real time dynamics of electronic predissociation of the CH3 radical (and its deuterated variant CD3) from selected vibrational states of the 3pz Rydberg state have been measured for the first time using a novel methodology based on a femtosecond three-color experiment to generate, two-photon excite and ionize methyl radicals as a function of time in combination with velocity map imaging detection. Subpicosecond lifetimes have been measured, showing a decreasing trend as vibrational excitation in the symmetric stretch and bending umbrella modes increases for both species. High-level ab initio calculations have been carried out in order to elucidate the CH3 3pz predissociation mechanism and support the lifetime measurements. The observed lifetimes are relevant for the understanding of the resonance enhanced multiphoton ionization spectroscopy of this radical.
RESUMO
Femtosecond lasers, used as tools to investigate the ablation dynamics of solids, can help to develop strategies to control the deposition of nanomaterials by pulsed laser ablation. In this work, Co/ZnS targets, potential candidates for the synthesis of diluted magnetic semiconductor materials, are irradiated by sequences of two femtosecond laser pulses delayed in the picosecond time scale. The ionic composition of the ablation plasma and the dependence of the ion signals on the interpulse delay and relative fluence are determined by time-of-flight mass spectrometry. The results show that, when pulses of different fluence are used, highly asymmetric ion yields are obtained, with more intense ion signals detected when the lower fluence pulse is temporally ahead. The comparison between asymmetric and equal fluence double pulse ablation dynamics provides some understanding of the different processes that modify the properties of the layer irradiated by the first pulse and of the mechanisms affecting the coupling of the delayed pulse into the material. The final outcome of the double pulse irradiation is characterized through the analysis of the deposits produced upon ablation.
RESUMO
Strong ultrashort laser pulses have opened new avenues for the manipulation of photochemical processes like photoisomerization or photodissociation. The presence of light intense enough to reshape the potential energy surfaces may steer the dynamics of both electrons and nuclei in new directions. A controlled laser pulse, precisely defined in terms of spectrum, time and intensity, is the essential tool in this type of approach to control chemical dynamics at a microscopic level. In this Perspective we examine the current strategies developed to achieve control of chemical processes with strong laser fields, as well as recent experimental advances that demonstrate that properties like the molecular absorption spectrum, the state lifetimes, the quantum yields and the velocity distributions in photodissociation processes can be controlled by the introduction of carefully designed strong laser fields.
RESUMO
Femtosecond time-resolved photoelectron spectroscopy experiments have been used to compare the electronic relaxation dynamics of aniline and d7-aniline following photoexcitation in the range 272-238 nm. Together with the results of recent theoretical investigations of the potential energy landscape [M. Sala, O. M. Kirkby, S. Guérin and H. H. Fielding, Phys. Chem. Chem. Phys., 2014, 16, 3122], these experiments allow us to resolve a number of unanswered questions surrounding the nonradiative relaxation mechanism. We find that tunnelling does not play a role in the electronic relaxation dynamics, which is surprising given that tunnelling plays an important role in the electronic relaxation of isoelectronic phenol and in pyrrole. We confirm the existence of two time constants associated with dynamics on the 1(1)πσ* surface that we attribute to relaxation through a conical intersection between the 1(1)πσ* and 1(1)ππ* states and motion on the 1(1)πσ* surface. We also present what we believe is the first report of an experimental signature of a 3-state conical intersection involving the 2(1)ππ*, 1(1)πσ* and 1(1)ππ* states.
RESUMO
The correlation between chemical structure and dynamics has been explored in a series of molecules with increasing structural complexity in order to investigate its influence on bond cleavage reaction times in a photodissociation event. Femtosecond time-resolved velocity map imaging spectroscopy reveals specificity of the ultrafast carbon-iodine (C-I) bond breakage for a series of linear (unbranched) and branched alkyl iodides, due to the interplay between the pure reaction coordinate and the rest of the degrees of freedom associated with the molecular structure details. Full-dimension time-resolved dynamics calculations support the experimental evidence and provide insight into the structure-dynamics relationship to understand structural control on time-resolved reactivity.
Assuntos
Hidrocarbonetos Halogenados/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Processos Fotoquímicos , Fatores de TempoRESUMO
We experimentally demonstrate an extremely compact and programmable pulse shaper composed of a single phase mask encoded into a spatial light modulator. Its principle of operation is similar to the previously theoretically introduced quasi-direct space-to-time pulse shaper [Opt. Express16, 16993 (2008)], which is based on diffractive optics. The proposed pulse shaper exhibits not only real-time temporal modulation, but also high-efficiency output pulses thanks to an active correction of the wavefront aberrations.
RESUMO
The Coulomb explosion of CH(3)I in an intense (10-100 TW cm(-2)), ultrashort (50 fs) and nonresonant (804 nm) laser field has been studied experimentally and justified theoretically. Ion images have been recorded using the velocity map imaging (VMI) technique for different singly and multiply charged ion fragments, CH(3)(p+) (p = 1) and I(q+) (q ≤ 3), arising from different Coulomb explosion channels. The fragment kinetic energy distributions obtained from the measured images for these ion fragments show significantly lower energies than those expected considering only Coulomb repulsion forces. The experimental results have been rationalized in terms of one-dimensional wave packet calculations on ab initio potential energy curves of the different multiply charged species. The calculations reveal the existence of a potential energy barrier due to a bound minimum in the potential energy curve of the CH(3)I(2+) species and a strong stabilization with respect to the pure Coulombic repulsion for the higher charged CH(3)I(n+) (n = 3, 4) species.
RESUMO
The ultrafast relaxation of 1-iodonaphthalene, with particular attention to the dissociation channels, has been studied by time-resolved femtosecond pump-probe mass spectrometry following excitation at 267 and 317 nm. The measured transients for the parent ion and the isobaric fragments, iodine and naphthyl radical, show complex decay profiles with up to four lifetimes in the femto-picosecond time scales. The transients are interpreted as the result of parallel relaxation of the simultaneously excited n sigma* and pi pi* states of the molecule. While the former leads to dissociation in about 400 fs, the latter converts to lower energy pi pi* singlet states at an ultrafast rate (24 fs) followed by intersystem crossing to nearby pi pi* triplet states.
RESUMO
The real time photodissociation dynamics of CH(3)I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) CH(3) fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH(3)(nu=0) and I((2)P(32)) and I(*)((2)P(12)) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I(*) channels when the CH(3) fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model.
RESUMO
The notion that strong laser light can intervene and modify the dynamical processes of matter has been demonstrated and exploited both in gas and condensed phases. The central objective of laser control schemes has been the modification of branching ratios in chemical processes, under the philosophy that conveniently tailored light can steer the dynamics of a chemical mechanism towards desired targets. Less explored is the role that strong laser control can play on chemical stereodynamics, i.e. the angular distribution of the products of a chemical reaction in space. This work demonstrates for the case of methyl iodide that when a molecular bond breaking process takes place in the presence of an intense infrared laser field, its stereodynamics is profoundly affected, and that the intensity of this laser field can be used as an external knob to control it.
RESUMO
Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.