Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Comput ; : 1-6, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37486979

RESUMO

We present IOHexperimenter, the experimentation module of the IOHprofiler project. IOHexperimenter aims at providing an easy-to-use and customizable toolbox for benchmarking iterative optimization heuristics such as local search, evolutionary and genetic algorithms, and Bayesian optimization techniques. IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other modules of the IOHprofiler environment. IOHexperimenter provides an efficient interface between optimization problems and their solvers while allowing for granular logging of the optimization process. Its logs are fully compatible with existing tools for interactive data analysis, which significantly speeds up the deployment of a benchmarking pipeline. The main components of IOHexperimenter are the environment to build customized problem suites and the various logging options that allow users to steer the granularity of the data records.

2.
Evol Comput ; 31(2): 81-122, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339005

RESUMO

Thirty years, 1993-2023, is a huge time frame in science. We address some major developments in the field of evolutionary algorithms, with applications in parameter optimization, over these 30 years. These include the covariance matrix adaptation evolution strategy and some fast-growing fields such as multimodal optimization, surrogate-assisted optimization, multiobjective optimization, and automated algorithm design. Moreover, we also discuss particle swarm optimization and differential evolution, which did not exist 30 years ago, either. One of the key arguments made in the paper is that we need fewer algorithms, not more, which, however, is the current trend through continuously claiming paradigms from nature that are suggested to be useful as new optimization algorithms. Moreover, we argue that we need proper benchmarking procedures to sort out whether a newly proposed algorithm is useful or not. We also briefly discuss automated algorithm design approaches, including configurable algorithm design frameworks, as the proposed next step toward designing optimization algorithms automatically, rather than by hand.


Assuntos
Algoritmos
3.
Hear Res ; 447: 109011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692015

RESUMO

This study introduces and evaluates the PHAST+ model, part of a computational framework designed to simulate the behavior of auditory nerve fibers in response to the electrical stimulation from a cochlear implant. PHAST+ incorporates a highly efficient method for calculating accommodation and adaptation, making it particularly suited for simulations over extended stimulus durations. The proposed method uses a leaky integrator inspired by classic biophysical nerve models. Through evaluation against single-fiber animal data, our findings demonstrate the model's effectiveness across various stimuli, including short pulse trains with variable amplitudes and rates. Notably, the PHAST+ model performs better than its predecessor, PHAST (a phenomenological model by van Gendt et al.), particularly in simulations of prolonged neural responses. While PHAST+ is optimized primarily on spike rate decay, it shows good behavior on several other neural measures, such as vector strength and degree of adaptation. The future implications of this research are promising. PHAST+ drastically reduces the computational burden to allow the real-time simulation of neural behavior over extended periods, opening the door to future simulations of psychophysical experiments and multi-electrode stimuli for evaluating novel speech-coding strategies for cochlear implants.


Assuntos
Potenciais de Ação , Adaptação Fisiológica , Implantes Cocleares , Nervo Coclear , Simulação por Computador , Estimulação Elétrica , Modelos Neurológicos , Nervo Coclear/fisiologia , Animais , Humanos , Fatores de Tempo , Implante Coclear/instrumentação , Biofísica , Estimulação Acústica
4.
Hear Res ; 432: 108741, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972636

RESUMO

Performing simulations with a realistic biophysical auditory nerve fiber model can be very time-consuming, due to the complex nature of the calculations involved. Here, a surrogate (approximate) model of such an auditory nerve fiber model was developed using machine learning methods, to perform simulations more efficiently. Several machine learning models were compared, of which a Convolutional Neural Network showed the best performance. In fact, the Convolutional Neural Network was able to emulate the behavior of the auditory nerve fiber model with extremely high similarity (R2>0.99), tested under a wide range of experimental conditions, whilst reducing the simulation time by five orders of magnitude. In addition, a method for randomly generating charge-balanced waveforms using hyperplane projection is introduced. In the second part of this paper, the Convolutional Neural Network surrogate model was used by an Evolutionary Algorithm to optimize the shape of the stimulus waveform in terms of energy efficiency. The resulting waveforms resemble a positive Gaussian-like peak, preceded by an elongated negative phase. When comparing the energy of the waveforms generated by the Evolutionary Algorithm with the commonly used square wave, energy decreases of 8%-45% were observed for different pulse durations. These results were validated with the original auditory nerve fiber model, which demonstrates that the proposed surrogate model can be used as its accurate and efficient replacement.


Assuntos
Implante Coclear , Implantes Cocleares , Estimulação Elétrica/métodos , Nervo Coclear/fisiologia , Aprendizado de Máquina
5.
SLAS Discov ; 25(6): 655-664, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32400262

RESUMO

There has been an increase in the use of machine learning and artificial intelligence (AI) for the analysis of image-based cellular screens. The accuracy of these analyses, however, is greatly dependent on the quality of the training sets used for building the machine learning models. We propose that unsupervised exploratory methods should first be applied to the data set to gain a better insight into the quality of the data. This improves the selection and labeling of data for creating training sets before the application of machine learning. We demonstrate this using a high-content genome-wide small interfering RNA screen. We perform an unsupervised exploratory data analysis to facilitate the identification of four robust phenotypes, which we subsequently use as a training set for building a high-quality random forest machine learning model to differentiate four phenotypes with an accuracy of 91.1% and a kappa of 0.85. Our approach enhanced our ability to extract new knowledge from the screen when compared with the use of unsupervised methods alone.


Assuntos
Genômica , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado , Genoma Humano/genética , Humanos , Fenótipo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA