Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 98(4): 590-606, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735606

RESUMO

Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta , Proteômica , Pseudomonas syringae/patogenicidade
2.
Plant Cell Physiol ; 49(3): 362-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18234716

RESUMO

Durum wheat plants (Triticum durum cv Creso) were grown in the presence of cadmium (0-40 microM) and analysed after 3 and 7 d for their growth, oxidative stress markers, phytochelatins, and enzymes and metabolites of the ascorbate (ASC)-glutathione (GSH) cycle. Cd exposure produced a dose-dependent inhibition of growth in both roots and leaves. Lipid peroxidation, protein oxidation and the decrease in the ascorbate redox state indicate the presence of oxidative stress in the roots, where H2O2 overproduction and phytochelatin synthesis also occurred. The activity of the ASC-GSH cycle enzymes significantly increased in roots. Consistently, a dose-dependent accumulation of Cd was evident in these organs. On the other hand, no oxidative stress symptoms or phytochelatin synthesis occurred in the leaves; where, at least during the time of our analysis, the levels of Cd remained irrelevant. In spite of this, enzymes of the ASC-GSH cycle significantly increased their activity in the leaves. When ASC biosynthesis was enhanced, by feeding plants with its last precursor, L-galactono-gamma-lactone (GL), Cd uptake was not affected. On the other hand, the oxidative stress induced in the roots by the heavy metal was alleviated. GL treatment also inhibited the Cd-dependent phytochelatin biosynthesis. These results suggest that different strategies can successfully cope with heavy metal toxicity. The changes that occurred in the ASC-GSH cycle enzymes of the leaves also suggest that the whole plant improved its antioxidant defense, even in those parts which had not yet been reached by Cd. This precocious increase in the enzymes of the ASC-GSH cycle further highlight the tight regulation and the relevance of this cycle in the defense against heavy metals.


Assuntos
Ácido Ascórbico/metabolismo , Cádmio/farmacologia , Glutationa/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Relação Dose-Resposta a Droga , Oxirredução , Fitoquelatinas/biossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Açúcares Ácidos/metabolismo , Triticum/crescimento & desenvolvimento
3.
FEBS Lett ; 581(5): 917-22, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17303129

RESUMO

To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.


Assuntos
Apoptose/fisiologia , Nicotiana/citologia , Nicotiana/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Citosol/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Leupeptinas/farmacologia , Mitocôndrias/metabolismo , Inibidores de Proteases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/efeitos dos fármacos
4.
Front Plant Sci ; 7: 971, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468287

RESUMO

Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes.

5.
Respir Physiol Neurobiol ; 173 Suppl: S13-9, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20188218

RESUMO

Plants are not only obligate aerobic organisms requiring oxygen for mitochondrial energy production, but also produce oxygen during photosynthesis. Therefore, plant cells have to cope with a hyperoxic cellular environment that determines a production of reactive oxygen species (ROS) higher than the one occurring in animal cells. In order to maintain redox homeostasis under control, plants evolved a particularly complex and redundant ROS-scavenging system, in which enzymes and metabolites are linked in a network of reactions. This review gives an overview of the mechanisms active in plant cells for controlling redox homeostasis during optimal growth conditions, when ROS are produced in a steady-state low amount, and during stress conditions, when ROS production is increased. Particular attention is paid to the aspects of oxygen/ROS management for which plant and animal cells differ.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Homeostase , Oxigênio/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Fisiológico
6.
FEBS J ; 276(1): 219-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19049514

RESUMO

Intact mitochondria isolated from Nicotiana tabacum cv. Bright Yellow 2 (TBY-2) cells can take up riboflavin via carrier-mediated systems that operate at different concentration ranges and have different uptake efficiencies. Once inside mitochondria, riboflavin is converted into catalytically active cofactors, FMN and FAD, due to the existence of a mitochondrial riboflavin kinase (EC 2.7.1.26) and an FAD synthetase (EC 2.7.7.2). Newly synthesized FAD can be exported from intact mitochondria via a putative FAD exporter. The dependence of FMN synthesis rate on riboflavin concentration shows saturation kinetics with a sigmoidal shape (S(0.5), V(max) and Hill coefficient values 0.32+/-0.12 microm, 1.4 nmol x min(-1) x mg(-1) protein and 3.1, respectively). The FAD-forming enzymes are both activated by MgCl(2), and reside in two distinct monofunctional enzymes, which can be physically separated in mitochondrial soluble and membrane-enriched fractions, respectively.


Assuntos
Mitocôndrias/enzimologia , Nicotiana/enzimologia , Nucleotidiltransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Bactérias/enzimologia , Transporte Biológico , Fracionamento Celular , Flavina-Adenina Dinucleotídeo/metabolismo , Fungos/enzimologia , Mamíferos , Oxirredução , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Protoplastos/enzimologia , Riboflavina/biossíntese , Riboflavina/metabolismo , Especificidade da Espécie , Nicotiana/metabolismo
7.
Plant Cell Physiol ; 44(8): 803-10, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12941872

RESUMO

The role of the exopolysaccharides (EPSs) produced by plant pathogenic bacteria has not completely clarified, they are considered either molecules able to avoid or delay the activation of plant defences, or acting as signal in the plant-pathogen cross-talk. In order to understand whether EPSs are recognized by infected plant cells and are able to induce the activation of plant defence responses, their capability to induce metabolic alteration in tobacco cells has been analysed. The results indicate that several EPSs, even if not chemically related, induce increases in phenylalanine ammonia-lyase, a marker enzyme of defence responses of plants against stress; but others are completely ineffective. The EPSs affecting phenylalanine ammonia-lyase also induce an increase in hydrogen peroxide production. Moreover, they alter the metabolism of ascorbate, another parameter indicative of the presence of stress conditions and the involvement of which in the hypersensitive reaction has been recently reported. The possibility that specific EPSs could act as signals in the plant-pathogenic bacteria interaction is discussed.


Assuntos
Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/metabolismo , Nicotiana/microbiologia , Polissacarídeos Bacterianos/fisiologia , Pseudomonas/fisiologia , Células Cultivadas , Oxirredução , Nicotiana/enzimologia , Nicotiana/metabolismo
8.
J Exp Bot ; 54(381): 249-58, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493852

RESUMO

Metabolic changes during the development and maturation of Triticum durum Desf. (L.) kernels were studied, with particular emphasis on changes in the redox state of ascorbate and glutathione, as well as in the activities of the enzymes responsible for the recycling of their oxidized forms (ascorbic free radical reductase, EC 1.6.5.4; dehydroascorbate reductase, EC 1.8.5.1; glutathione reductase, EC 1.6.4.2) and for detoxification or utilization of hydrogen peroxide (ascorbate peroxidase, EC 1.11.1.11; catalase, EC 1.11.1.6). In parallel with this analysis, the production and storage of reserve compounds was studied, in particular, soluble carbohydrates (mono- di-saccharides and fructans) and the transition from sulphydryl groups to disulphide bridges into proteins. The results indicate that both the activities of the ascorbate and glutathione redox enzymes and that of catalase are high before the start of drying maturation, after which they decrease. Moreover, analysis of the redox state of ascorbate and glutathione pairs and the sulphydryl to disulphide transition into proteins suggests that these three parameters are tightly related during kernel maturation, thus confirming the involvement of the two redox pairs in protein maturation as well as in protection against reactive oxygen species. The physiological implications of the changes in cellular redox state and in soluble carbohydrates for the acquisition of desiccation tolerance and reaching the resting phase in orthodox seeds are also discussed.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Triticum/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Oxirredução , Sementes/crescimento & desenvolvimento , Triticum/enzimologia , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA