Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Inorg Chem ; 19(4-5): 505-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24549757

RESUMO

Arabinanase is a glycosyl hydrolase that is able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. The enzyme has two domains, an N-terminal catalytic domain with a characteristic ß-propeller fold and a C-terminal domain whose function is unknown. A calcium ion, located near the catalytic site, serves to stabilize the N-terminal domain, but it has also been proposed to play a key role in the enzyme mechanism. The present work describes the structure of an inactive mutant of the wild-type enzyme (H318Q) and in which the calcium ion has been adventitiously replaced by nickel. These structural studies, together with functional and modelling studies, clearly support the role of the calcium ion in the overall reaction mechanism.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Cálcio/química , Cálcio/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por Substrato
2.
Sci Rep ; 10(1): 19564, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177617

RESUMO

ATP-binding cassette (ABC) type I importers are widespread in bacteria and play a crucial role in its survival and pathogenesis. They share the same modular architecture comprising two intracellular nucleotide-binding domains (NBDs), two transmembrane domains (TMDs) and a substrate-binding protein. The NBDs bind and hydrolyze ATP, thereby generating conformational changes that are coupled to the TMDs and lead to substrate translocation. A group of multitask NBDs that are able to serve as the cellular motor for multiple sugar importers was recently discovered. To understand why some ABC importers share energy-coupling components, we used the MsmX ATPase from Bacillus subtilis as a model for biological and structural studies. Here we report the first examples of functional hybrid interspecies ABC type I importers in which the NBDs could be exchanged. Furthermore, the first crystal structure of an assigned multitask NBD provides a framework to understand the molecular basis of the broader specificity of interaction with the TMDs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Bacillus subtilis/química , Biologia Computacional/métodos , Cristalografia por Raios X , Firmicutes/química , Firmicutes/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos
3.
Nucleic Acids Res ; 35(14): 4755-66, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17617643

RESUMO

In the absence of arabinose, the AraR transcription factor represses the expression of genes involved in the utilization of arabinose, xylose and galactose in Bacillus subtilis. AraR exhibits a chimeric organization: the N-terminal DNA-binding region belongs to the GntR family and the C-terminal effector-binding domain is homologous to the GalR/LacI family. Here, the AraR-DNA-binding interactions were characterized in vivo and in vitro. The effect of residue substitutions in the AraR N-terminal domain and of base-pair exchanges into an AraR-DNA-binding operator site were examined by assaying for AraR-mediated regulatory activity in vivo and DNA-binding activity in vitro. The results showed that residues K4, R45 and Q61, located in or near the winged-helix DNA-binding motif, were the most critical amino acids required for AraR function. In addition, the analysis of the various mutations in an AraR palindromic operator sequence indicated that bases G9, A11 and T16 are crucial for AraR binding. Moreover, an AraR mutant M34T was isolated that partially suppressed the effect of mutations in the regulatory cis-elements. Together, these findings extend the knowledge on the nature of AraR nucleoprotein complexes and provide insight into the mechanism that underlies the mode of action of AraR and its orthologues.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Regiões Operadoras Genéticas , Regulon , Proteínas Repressoras/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
J Bacteriol ; 190(12): 4272-80, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18408032

RESUMO

The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-alpha-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent K(m) of 2.0 mg ml(-1) and V(max) of 0.25 mmol min(-1) mg(-1) at pH 7.0 and 50 degrees C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a sigma(A)-dependent and a sigma(H)-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Arabinose/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Pectinas/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transcrição Gênica/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-18607095

RESUMO

Two Bacillus subtilis extracellular endo-1,5-alpha-L-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-alpha-L-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized. Crystals appeared in two different space groups: P1, with unit-cell parameters a = 51.9, b = 57.6, c = 86.2 A, alpha = 82.3, beta = 87.9, gamma = 63.6 degrees , and P2(1)2(1)2(1), with unit-cell parameters a = 57.9, b = 163.3, c = 202.0 A. X-ray data have been collected for the native and the SeMet derivative to 1.9 and 2.7 A resolution, respectively. An initial model of Abn2 is being built in the SeMet-phased map.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Difração de Raios X , Proteínas de Bactérias/biossíntese , Cristalização , Glicosídeo Hidrolases/biossíntese
6.
J Bacteriol ; 189(22): 8371-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17827291

RESUMO

In Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMNPQ-abfA operon. The contributions of the coeffectors HPr and Crh to CCR differ according to growth phase. HPr dependency occurs during both exponential growth and the transitional phase, while Crh dependency is detected mainly at the transitional phase. Our results suggest that Crh synthesis may increase at the end of exponential growth and consequently contribute to this effect, together with other factors.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glucose/farmacologia , Polissacarídeos/metabolismo , Transativadores/genética , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
7.
PLoS One ; 12(12): e0189483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240795

RESUMO

Carbohydrates from plant cell walls are often found as heteropolysaccharides intertwined with each other. For competitive advantage against other microorganisms, and ability to fully exploit available carbon and energy sources, Bacillus subtilis possesses a high number of proteins dedicated to the uptake of mono- and oligosaccharides. Here, we characterize transporter complexes, belonging to the ATP-binding cassette (ABC) superfamily, involved in the uptake of oligosaccharides commonly found in pectin. The uptake of these carbohydrates is shown to be MsmX-dependent, assigning a key role in pectin mobilization for MsmX, a multipurpose ATPase serving several distinct ABC-type I sugar importers. Mutagenesis analysis of the transmembrane domains of the AraNPQ MsmX-dependent importer revealed putative residues for MsmX interaction. Interestingly however, although MsmX is shown to be essential for energizing various ABC transporters we found that a second B. subtilis ATPase, YurJ, is able to complement its function when placed in trans at a different locus of the chromosome.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/metabolismo , Pectinas/metabolismo
8.
FEMS Microbiol Lett ; 241(1): 41-8, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15556708

RESUMO

Bacillus subtilis synthesizes at least one arabinanase encoded by the abnA gene that is able to degrade the polysaccharide arabinan. Here, we report the expression in Escherichia coli of the full-length abnA coding region with a His6-tag fused to the C-terminus. The recombinant protein was secreted to the periplasmic space and correctly processed by the E. coli signal peptidase. The substrate specificity of purified AbnA, the physico-chemical properties and kinetic parameters were determined. Functional analysis studies revealed Glu 215 as a key residue for AbnA hydrolytic activity and indicated that in addition to AbnA B. subtilis secretes other enzyme(s) able to degrade linear 1,5-alpha-l-arabinan.


Assuntos
Bacillus subtilis/enzimologia , Glicosídeo Hidrolases/isolamento & purificação , Sequência de Aminoácidos , Escherichia coli/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/fisiologia , Dados de Sequência Molecular , Proteínas Recombinantes/isolamento & purificação
9.
PLoS One ; 9(11): e111802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364981

RESUMO

AraR is a transcription factor involved in the regulation of carbon catabolism in Bacillus subtilis. This regulator belongs to the vast GntR family of helix-turn-helix (HTH) bacterial metabolite-responsive transcription factors. In this study, AraR-DNA specific interactions were analysed by an in vitro missing-contact probing and validated using an in vivo model. We show that amino acid E30 of AraR, a highly conserved residue in GntR regulators, is indirectly responsible for the specificity of amino acid-base contacts, and that by mutating this residue it will be possible to achieve new specificities towards DNA contacts. The results highlight the importance in DNA recognition and binding of highly conserved residues across certain families of transcription factors that are located in the DNA-binding domain but not predicted to specifically contact bases on the DNA. These new findings not only contribute to a more detailed comprehension of AraR-operator interactions, but may also be useful for the establishment of a framework of rules governing protein-DNA recognition.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , DNA Bacteriano/química , Modelos Moleculares , Fatores de Transcrição/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
FEBS J ; 278(14): 2511-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21575135

RESUMO

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. On the basis of substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in the detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolize several related secondary metabolites requires regulation at the genetic level. In the present study, using site-directed mutagenesis, we show that the production of AraL is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of haloalkanoate dehalogenase subfamily IIA and IIB are characterized by a broad-range and overlapping specificity anticipating the need for regulation at the genetic level. We provide evidence for the existence of a genetic regulatory mechanism controlling the production of AraL.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrolases/metabolismo , Sequência de Aminoácidos , Compostos de Anilina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Biologia Computacional , Sistemas Inteligentes , Deleção de Genes , Genes Reporter , Concentração de Íons de Hidrogênio , Hidrolases/genética , Hidrolases/isolamento & purificação , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Compostos Organofosforados/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Elementos Reguladores de Transcrição , Alinhamento de Sequência , Especificidade por Substrato
11.
FEBS J ; 277(21): 4562-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20883454

RESUMO

Endo-1,5-α-L-arabinanases are glycosyl hydrolases that are able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. Two extracellular endo-1,5-α-L-arabinanases have been isolated from Bacillus subtilis, BsArb43A and BsArb43B (formally named AbnA and Abn2, respectively). BsArb43B shows low sequence identity with previously characterized 1,5-α-L-arabinanases and is a much larger enzyme. Here we describe the 3D structure of native BsArb43B, biochemical and structure characterization of two BsArb43B mutant proteins (H318A and D171A), and the 3D structure of the BsArb43B D171A mutant enzyme in complex with arabinohexose. The 3D structure of BsArb43B is different from that of other structurally characterized endo-1,5-α-L-arabinanases, as it comprises two domains, an N-terminal catalytic domain, with a 3D fold similar to that observed for other endo-1,5-α-L-arabinanases, and an additional C-terminal domain. Moreover, this work also provides experimental evidence for the presence of a cluster containing a calcium ion in the catalytic domain, and the importance of this calcium ion in the enzymatic mechanism of BsArb43B.


Assuntos
Bacillus subtilis/enzimologia , Cálcio/química , Glicosídeo Hidrolases/química , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura
12.
Microbiology (Reading) ; 154(Pt 9): 2719-2729, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757805

RESUMO

Bacillus subtilis produces alpha-l-arabinofuranosidases (EC 3.2.1.55; AFs) capable of releasing arabinosyl oligomers and l-arabinose from plant cell walls. Here, we show by insertion-deletion mutational analysis that genes abfA and xsa(asd), herein renamed abf2, encode AFs responsible for the majority of the intracellular AF activity in B. subtilis. Both enzyme activities were shown to be cytosolic and functional studies indicated that arabino-oligomers are natural substrates for the AFs. The products of the two genes were overproduced in Escherichia coli, purified and characterized. The molecular mass of the purified AbfA and Abf2 was about 58 kDa and 57 kDa, respectively. However, native PAGE gradient gel analysis and cross-linking assays detected higher-order structures (>250 kDa), suggesting a multimeric organization of both enzymes. Kinetic experiments at 37 degrees C, with p-nitrophenyl-alpha-l-arabinofuranoside as substrate, gave an apparent K(m) of 0.498 mM and 0.421 mM, and V(max) of 317 U mg(-1) and 311 U mg(-1) for AbfA and Abf2, respectively. The two enzymes displayed maximum activity at 50 degrees C and 60 degrees C, respectively, and both proteins were most active at pH 8.0. AbfA and Abf2 both belong to family 51 of the glycoside hydrolases but have different substrate specificity. AbfA acts preferentially on (1-->5) linkages of linear alpha-1,5-l-arabinan and alpha-1,5-linked arabino-oligomers, and is much less effective on branched sugar beet arabinan and arabinoxylan and arabinogalactan. In contrast, Abf2 is most active on (1-->2) and (1-->3) linkages of branched arabinan and arabinoxylan, suggesting a concerted contribution of these enzymes to optimal utilization of arabinose-containing polysaccharides by B. subtilis.


Assuntos
Arabinose/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Glicosídeo Hidrolases/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Mutação INDEL , Dados de Sequência Molecular , Peso Molecular , Plasmídeos , Polissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
13.
J Bacteriol ; 188(8): 3024-36, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16585763

RESUMO

The Bacillus subtilis AraR transcription factor represses at least 13 genes required for the extracellular degradation of arabinose-containing polysaccharides, transport of arabinose, arabinose oligomers, xylose, and galactose, intracellular degradation of arabinose oligomers, and further catabolism of this sugar. AraR exhibits a chimeric organization comprising a small N-terminal DNA-binding domain that contains a winged helix-turn-helix motif similar to that seen with the GntR family and a larger C-terminal domain homologous to that of the LacI/GalR family. Here, a model for AraR was derived based on the known crystal structures of the FadR and PurR regulators from Escherichia coli. We have used random mutagenesis, deletion, and construction of chimeric LexA-AraR fusion proteins to map the functional domains of AraR required for DNA binding, dimerization, and effector binding. Moreover, predictions for the functional role of specific residues were tested by site-directed mutagenesis. In vivo analysis identified particular amino acids required for dimer assembly, formation of the nucleoprotein complex, and composition of the sugar-binding cleft. This work presents a structural framework for the function of AraR and provides insight into the mechanistic mode of action of this modular repressor.


Assuntos
Bacillus subtilis/genética , Nucleoproteínas/metabolismo , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Fusão Gênica Artificial , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Western Blotting , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Fatores de Transcrição/química
14.
Microbiology (Reading) ; 149(Pt 9): 2345-2355, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949161

RESUMO

The Bacillus subtilis proteins involved in the utilization of L-arabinose are encoded by the araABDLMNPQ-abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. Additionally, expression of both the ara operon and the araE gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the ara regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (cres) present in the ara operon (cre araA and cre araB) and one cre in the araE gene (cre araE) are implicated in this mechanism. Furthermore, cre araA located between the promoter region of the ara operon and the araA gene, and cre araB placed 2 kb downstream within the araB gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at cre araB was detected, suggesting that transcription 'roadblocking' of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the ara regulon, which requires a functional araR.


Assuntos
Arabinose/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon/fisiologia , Bacillus subtilis/fisiologia , Northern Blotting , Carbono/fisiologia , Genes Bacterianos , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos , Óperon/fisiologia , Regiões Promotoras Genéticas , Transcrição Gênica
15.
J Bacteriol ; 186(5): 1287-96, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973026

RESUMO

Bacillus subtilis produces hemicellulases capable of releasing arabinosyl oligomers and arabinose from plant cell walls. In this work, we characterize the transcriptional regulation of three genes encoding arabinan-degrading enzymes that are clustered with genes encoding enzymes that further catabolize arabinose. The abfA gene comprised in the metabolic operon araABDLMNPQ-abfA and the xsa gene located 23 kb downstream most probably encode alpha-L-arabinofuranosidases (EC 3.2.1.55). Here, we show that the abnA gene, positioned immediately upstream from the metabolic operon, encodes an endo-alpha-1,5-arabinanase (EC 3.2.1.99). Furthermore, by in vivo RNA studies, we inferred that abnA and xsa are monocistronic and are transcribed from sigma(A)-like promoters. Transcriptional fusion analysis revealed that the expression of the three arabinases is induced by arabinose and arabinan and is repressed by glucose. The levels of induction by arabinose and arabinan are higher during early postexponential growth, suggesting a temporal regulation. Moreover, the induction mechanism of these genes is mediated through negative control by the key regulator of arabinose metabolism, AraR. Thus, we analyzed AraR-DNA interactions by in vitro quantitative DNase I footprinting and in vivo analysis of single-base-pair substitutions within the promoter regions of xsa and abnA. The results indicate that transcriptional repression of the abfA and xsa genes is achieved by a tightly controlled mechanism but that the regulation of abnA is more flexible. We suggest that the expression of genes encoding extracellular degrading enzymes of arabinose-containing polysaccharides, transport systems, and intracellular enzymes involved in further catabolism is regulated by a coordinate mechanism triggered by arabinose via AraR.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Polissacarídeos/metabolismo , Fatores de Transcrição , Transcrição Gênica , Fator de Transcrição AraC , Arabinose/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Sequência de Bases , Meios de Cultura , Dados de Sequência Molecular , Óperon , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA