Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Br J Clin Pharmacol ; 81(2): 235-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26382728

RESUMO

AIMS: Ibrutinib, an inhibitor of Bruton's tyrosine kinase, is used in the treatment of mantle cell lymphoma or chronic lymphocytic leukaemia. Ibrutinib undergoes extensive rapid oxidative metabolism mediated by cytochrome P450 3A both at the level of first pass and clearance, which might result in low oral bioavailability. The present study was designed to investigate the absolute bioavailability (F) of ibrutinib in the fasting and fed state and assess the effect of grapefruit juice (GFJ) on the systemic exposure of ibrutinib in order to determine the fraction escaping the gut (Fg ) and the fraction escaping hepatic extraction (Fh ) in the fed state. METHODS: All participants received treatment A [560 mg oral ibrutinib, under fasting conditions], B (560 mg PO ibrutinib, fed, administered after drinking glucose drink) and C (140 mg oral ibrutinib, fed, with intake of GFJ before dosing). A single intravenous (i.v.) dose of 100 µg (13) C6 -ibrutinib was administered 2 h after each oral dose. RESULTS: The estimated 'F' for treatments A, B and C was 3.9%, 8.4% and 15.9%, respectively. Fg and Fh in the fed state were 47.0% and 15.9%, respectively. Adverse events were mild to moderate in severity (Grade 1-2) and resolved without sequelae by the end of the study. CONCLUSION: The absolute oral bioavailability of ibrutinib was low, ranging from 3.9% in the fasting state to 8.4% when administered 30 min before a standard breakfast without GFJ and 15.9% with GFJ. Ibrutinib was well tolerated following a single oral and i.v. dose, under both fasted and fed conditions and regardless of GFJ intake status.


Assuntos
Antineoplásicos/farmacocinética , Citrus paradisi/química , Interações Alimento-Droga , Sucos de Frutas e Vegetais , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Adenina/análogos & derivados , Administração Oral , Adolescente , Adulto , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Área Sob a Curva , Disponibilidade Biológica , Isótopos de Carbono , Estudos Cross-Over , Relação Dose-Resposta a Droga , Jejum , Feminino , Voluntários Saudáveis , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Piperidinas , Pirazóis/administração & dosagem , Pirazóis/sangue , Pirimidinas/administração & dosagem , Pirimidinas/sangue , Fatores de Tempo , Adulto Jovem
2.
Clin Pharmacol Drug Dev ; 13(8): 852-860, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740493

RESUMO

Erdafitinib, a selective and potent oral pan-FGFR inhibitor, is metabolized mainly through CYP2C9 and CYP3A4 enzymes. This phase 1, open-label, single-sequence, drug-drug interaction study evaluated the pharmacokinetics, safety, and tolerability of a single oral dose of erdafitinib alone and when co-administered with steady state oral carbamazepine, a dual inducer of CYP3A4 and CYP2C9, in 13 healthy adult participants (NCT04330248). Compared with erdafitinib administration alone, carbamazepine co-administration decreased total and free maximum plasma concentrations of erdafitinib (Cmax) by 35% (95% CI 30%-39%) and 22% (95% CI 17%-27%), respectively. The areas under the concentration-time curve over the time interval from 0 to 168 hours, to the last quantifiable data point, and to time infinity (AUC168h, AUClast, AUCinf), were markedly decreased for both total erdafitinib (56%-62%) and free erdafitinib (48%-55%). The safety profile of erdafitinib was consistent with previous clinical studies in healthy participants, with no new safety concerns when administered with or without carbamazepine. Co-administration with carbamazepine may reduce the activity of erdafitinib due to reduced exposure. Concomitant use of strong CYP3A4 inducers with erdafitinib should be avoided.


Assuntos
Área Sob a Curva , Carbamazepina , Citocromo P-450 CYP3A , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Adulto , Masculino , Feminino , Carbamazepina/farmacologia , Carbamazepina/farmacocinética , Carbamazepina/administração & dosagem , Adulto Jovem , Citocromo P-450 CYP3A/metabolismo , Pessoa de Meia-Idade , Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Pirazóis/farmacocinética , Pirazóis/efeitos adversos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Quinoxalinas/farmacocinética , Quinoxalinas/efeitos adversos , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Administração Oral , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
3.
Clin Pharmacol Drug Dev ; 13(10): 1164-1176, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39044705

RESUMO

Erdafitinib, an oral pan-FGFR inhibitor, is used in locally advanced or metastatic urothelial carcinoma for adults with FGFR3 genetic alterations and whose disease progressed following prior systemic therapy. This drug-drug interaction substudy evaluated the effect of erdafitinib on the pharmacokinetics of midazolam (cytochrome P450 3A4 substrate), and metformin (organic cation transporter 2 substrate). Twenty-five patients with advanced solid tumors harboring FGFR gene alterations received pretreatment with single doses of midazolam and metformin, followed by a daily dose of erdafitinib. Drug-drug interaction assessments were performed at erdafitinib steady state following coadministration of single doses of midazolam and metformin, respectively. Geometric mean ratios for maximum plasma concentration and area under the plasma concentration-time curve (AUC) from time 0 to the last measurable concentration, and AUC from time 0 to infinity were estimated using linear mixed-effects models (90% confidence interval within 80%-125% indicated no interaction). The 90% confidence intervals of geometric mean ratios for maximum plasma concentration, AUC from time 0 to the last measurable concentration, and AUC from time 0 to infinity of midazolam (86.3%, 88.5%, and 82.1%), 1-OH midazolam (99.8%, 97.4%, and 101.5%), and metformin (108.7%, 119.0%, and 113.9%) were either contained or slightly outside the 80%-125% interval and not considered clinically meaningful. Adverse events were consistent with the known erdafitinib safety profile; no new safety signals emerged. Thus, repeated dosing of erdafitinib had no clinically meaningful effect on the pharmacokinetics of midazolam or metformin.


Assuntos
Área Sob a Curva , Interações Medicamentosas , Metformina , Midazolam , Neoplasias , Humanos , Midazolam/farmacocinética , Midazolam/administração & dosagem , Metformina/farmacocinética , Metformina/administração & dosagem , Metformina/efeitos adversos , Metformina/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Pirazóis/farmacocinética , Pirazóis/efeitos adversos , Pirazóis/administração & dosagem , Quinoxalinas/farmacocinética , Quinoxalinas/administração & dosagem , Quinoxalinas/efeitos adversos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
4.
Target Oncol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285155

RESUMO

BACKGROUND: Cytokine release syndrome, commonly associated with T-cell immunotherapies, was observed with talquetamab, a T-cell-redirecting bispecific antibody, in the phase I/II MonumenTAL-1 study, leading to elevated interleukin (IL)-6, which can suppress cytochrome P450 (CYP) enzyme activity. OBJECTIVE: We aimed to evaluate the potential impact of elevated IL-6 on the exposure of co-administered CYP450 substrates for two scenarios: (1) the observed median IL-6 profile and (2) a profile with the highest IL-6 maximum concentration following talquetamab treatment. METHODS: A physiologically based pharmacokinetic model was developed based on the literature and simulations performed using observed IL-6 profiles from patients in MonumenTAL-1 who received the subcutaneous recommended phase 2 doses (RP2Ds) of talquetamab: 0.4 mg/kg weekly (QW) and 0.8 mg/kg every other week (Q2W). RESULTS: Median IL-6 maximum concentration was 18.4 and 7.1 pg/mL, and maximum IL-6 maximum concentration was 213 and 3503 pg/mL for talquetamab QW and Q2W RP2Ds, respectively. For the median IL-6 profile, no interaction between IL-6 and studied CYP substrates was predicted at either RP2D. The maximum IL-6 profile predicted weak-to-moderate impact on exposure of CYP2C19, CYP3A4, and CYP3A5 substrates and minimal impact on exposure of CYP1A2 substrates at both RP2Ds. Impact on exposure of CYP2C9 substrates was predicted as minimal at QW and minimal-to-weak at Q2W RP2Ds. Time to return to 20% difference from baseline enzymatic activity was predicted as 7 and 9 days after start of cycle 1 for QW and Q2W RP2Ds, respectively. CONCLUSIONS: These modeling results suggest that IL-6 release due to talquetamab-induced cytokine release syndrome has limited impact on potential drug-drug interactions, with the highest likelihood of impact occurring from initiation of talquetamab step-up dosing up to 7 (QW) or 9 (Q2W) days after first treatment dose in cycle 1 and during and after cytokine release syndrome. Multiple myeloma can be treated with immunotherapies such as the bispecific antibody, talquetamab, which binds the novel antigen G protein-coupled receptor family C group 5 member D on multiple myeloma cells and CD3 on T cells and induces T-cell-mediated lysis of multiple myeloma cells. Following talquetamab treatment, many patients experience cytokine release syndrome, an inflammatory immune response where levels of proinflammatory cytokines, including interleukin (IL)-6, are increased. Interleukin-6 can suppress the activity of important enzymes in the body (cytochrome [CYP] P450s) that are involved in drug clearance. This study used a physiologically based pharmacokinetic computer model to investigate the potential impact of increased IL-6 levels on CYP450 enzymes to determine subsequent impact on drugs that are metabolized by CYP450 enzymes. The results showed no predicted interaction between median levels of IL-6 observed in patients and CYP substrates (such as caffeine and omeprazole) with talquetamab. In a simulation that assessed higher (maximum) IL-6 levels observed in patients, the predicted impact of IL-6 was minimal to weak for most of the CYP substrates assessed. The effect on CYP450 enzymatic activity was highest from initiation of talquetamab step-up dosing up to 7-9 days after the first treatment dose of talquetamab. These results suggest that, in this treatment time period, elevated IL-6 levels due to talquetamab-induced cytokine release syndrome have limited impact on drugs that are CYP substrates that may be used in conjunction with talquetamab, but that the concentration and toxicity of these drugs should be monitored and the dose of CYP substrate adjusted as required.

5.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1117-1129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831634

RESUMO

Cytokine release syndrome (CRS) was associated with teclistamab treatment in the phase I/II MajesTEC-1 study. Cytokines, especially interleukin (IL)-6, are known suppressors of cytochrome P450 (CYP) enzymes' activity. A physiologically based pharmacokinetic model evaluated the impact of IL-6 serum levels on exposure of substrates of various CYP enzymes (1A2, 2C9, 2C19, 3A4, 3A5). Two IL-6 kinetics profiles were assessed, the mean IL-6 profile with a maximum concentration (Cmax) of IL-6 (21 pg/mL) and the IL-6 profile of the patient presenting the highest IL-6 Cmax (288 pg/mL) among patients receiving the recommended phase II dose of teclistamab in MajesTEC-1. For the mean IL-6 kinetics profile, teclistamab was predicted to result in a limited change in exposure of CYP substrates (area under the curve [AUC] mean ratio 0.87-1.20). For the maximum IL-6 kinetics profile, the impact on omeprazole, simvastatin, midazolam, and cyclosporine exposure was weak to moderate (mean AUC ratios 1.90-2.23), and minimal for caffeine and s-warfarin (mean AUC ratios 0.82-1.25). Maximum change in exposure for these substrates occurred 3-4 days after step-up dosing in cycle 1. These results suggest that after cycle 1, drug interaction from IL-6 effect has no meaningful impact on CYP activities, with minimal or moderate impact on CYP substrates. The highest risk of drug interaction is expected to occur during step-up dosing up to 7 days after the first treatment dose (1.5 mg/kg subcutaneously) and during and after CRS.


Assuntos
Síndrome da Liberação de Citocina , Interações Medicamentosas , Interleucina-6 , Modelos Biológicos , Humanos , Interleucina-6/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo , Área Sob a Curva , Ciclosporina/farmacocinética , Ciclosporina/administração & dosagem , Midazolam/farmacocinética , Midazolam/administração & dosagem , Omeprazol/farmacocinética , Omeprazol/administração & dosagem , Sinvastatina/farmacocinética , Sinvastatina/administração & dosagem
6.
Clin Pharmacol Ther ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422118

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, fm,CYP3A4, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of fm,CYP3A4 (0.086-1.0), Fg (0.11-1.0) and hepatic availability (0.09-0.96) were included. Predictions were most often accurate for compounds that are not P-gp substrates or that are P-gp substrates but that have high permeability. Case studies for three challenging DDI predictions (i.e., for eliglustat, tofacitinib, and ribociclib) are presented. Along with parameter sensitivity analysis to understand key parameters impacting DDI simulations, alternative model structures should be considered, for example, a mechanistic absorption model instead of a first-order absorption model might be more appropriate for a P-gp substrate with low permeability. Any mechanisms pertinent to the CYP3A substrate that rifampin might impact (e.g., induction of other enzymes or P-gp) should be considered for inclusion in the model. PBPK modeling was shown to be an effective tool to predict induction DDIs with rifampin for CYP3A substrates with limited mechanistic complications, increasing confidence in the rifampin model. While this analysis focused on rifampin, the learnings may apply to other inducers.

7.
J Med Chem ; 67(13): 10986-11002, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932487

RESUMO

Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.


Assuntos
Antivirais , Azetidinas , Oxindóis , Infecções por Vírus Respiratório Sincicial , Compostos de Espiro , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Animais , Oxindóis/química , Oxindóis/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/farmacocinética , Compostos de Espiro/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Antivirais/administração & dosagem , Azetidinas/química , Azetidinas/farmacologia , Azetidinas/administração & dosagem , Azetidinas/farmacocinética , Profilaxia Pré-Exposição/métodos , Injeções Intramusculares , Indóis/química , Indóis/administração & dosagem , Indóis/farmacologia , Injeções Subcutâneas , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
Am J Forensic Med Pathol ; 33(2): 119-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389904

RESUMO

Postmortem redistribution of fentanyl in the rabbit was investigated after application of the 50-µg/h Durogesic pain patch. Patches were applied for 48 hours. Two cycles of patch administration were used before characterization of the postmortem redistribution. Fentanyl showed marked redistribution into the femoral and pulmonary veins of the rabbit through 48 hours after the animals were humanely killed and the pain patches removed. The plasma concentration of 2.34 ng/mL in the femoral blood before killing the animals increased 5.6-fold by 48 hours after patch removal to 13.2 ng/mL. This postmortem concentration is approximately 3-fold the C(max) determined during antemortem pharmacokinetic analysis, 4 ng/mL, which was achieved 24 hours after the application of the second 50-µg/h Durogesic pain patch. After blood sampling for 48 hours after animal termination with patch removal compared with sampling for 48 hours from animals not terminated and with patch removal, the exposure ratios in the terminated animals were approximately 30-fold, indicating that between the postmortem redistribution of fentanyl and the cessation of hepatic clearance of fentanyl in the rabbit, the postmortem redistribution of fentanyl leads to an elevated measures of postmortem blood concentrations relative to antemortem blood concentrations.


Assuntos
Analgésicos Opioides/sangue , Analgésicos Opioides/farmacocinética , Fentanila/sangue , Fentanila/farmacocinética , Mudanças Depois da Morte , Administração Cutânea , Analgésicos Opioides/administração & dosagem , Animais , Cromatografia Líquida , Feminino , Fentanila/administração & dosagem , Toxicologia Forense , Modelos Lineares , Espectrometria de Massas , Coelhos , Distribuição Aleatória
9.
CPT Pharmacometrics Syst Pharmacol ; 11(1): 55-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668334

RESUMO

As one of the key components in model-informed drug discovery and development, physiologically-based pharmacokinetic (PBPK) modeling linked with in vitro-to-in vivo extrapolation (IVIVE) is widely applied to quantitatively predict drug-drug interactions (DDIs) on drug-metabolizing enzymes and transporters. This study aimed to investigate an IVIVE for intestinal P-glycoprotein (Pgp, ABCB1)-mediated DDIs among three Pgp substrates, digoxin, dabigatran etexilate, and quinidine, and two Pgp inhibitors, itraconazole and verapamil, via PBPK modeling. For Pgp substrates, assuming unbound Michaelis-Menten constant (Km ) to be intrinsic, in vitro-to-in vivo scaling factors for maximal Pgp-mediated efflux rate (Jmax ) were optimized based on the clinically observed results without co-administration of Pgp inhibitors. For Pgp inhibitors, PBPK models utilized the reported in vitro values of Pgp inhibition constants (Ki ), 1.0 µM for itraconazole and 2.0 µM for verapamil. Overall, the PBPK modeling sufficiently described Pgp-mediated DDIs between these substrates and inhibitors with the prediction errors of less than or equal to ±25% in most cases, suggesting a reasonable IVIVE for Pgp kinetics in the clinical DDI results. The modeling results also suggest that Pgp kinetic parameters of both the substrates (Km and Jmax ) and the inhibitors (Ki ) are sensitive to Pgp-mediated DDIs, thus being key for successful DDI prediction. It would also be critical to incorporate appropriate unbound inhibitor concentrations at the site of action into PBPK models. The present results support a quantitative prediction of Pgp-mediated DDIs using in vitro parameters, which will significantly increase the value of in vitro studies to design and run clinical DDI studies safely and effectively.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Dabigatrana/farmacocinética , Digoxina/farmacocinética , Intestinos/metabolismo , Quinidina/farmacocinética , Adulto , Área Sob a Curva , Simulação por Computador , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Humanos , Itraconazol/farmacologia , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Modelos Biológicos , Verapamil/farmacologia , Adulto Jovem
10.
Clin Pharmacokinet ; 61(8): 1115-1128, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579824

RESUMO

BACKGROUND AND OBJECTIVE: A physiologically based pharmacokinetic (PBPK) modeling approach for esketamine and its metabolite noresketamine after esketamine intranasal administration was developed to aid the prediction of drug-drug interactions (DDIs) during the clinical development of esketamine nasal spray (SPRAVATO®). This article describes the development of the PBPK model to predict esketamine and noresketamine kinetics after intranasal administration of esketamine and its verification and application in the prediction of prospective DDIs with esketamine using models of index perpetrator and victim drugs. METHODS: The intranasal PBPK (IN-PBPK) models for esketamine/noresketamine were constructed in Simcyp® v14.1 by combining the oral and intravenous esketamine PBPK models, with the dose divided in the ratio 57.7/42.3. Verification of the model was based on comparing the pharmacokinetics and DDI simulations with observed data in healthy volunteers. RESULTS: The simulated and observed (171 healthy volunteers) plasma pharmacokinetic profiles of intranasal esketamine/noresketamine showed a good match. The relative contributions of different cytochromes P450 (CYPs), mainly CYP3A4 and CYP2B6, involved in esketamine/noresketamine clearance was captured correctly in the IN-PBPK model using the DDI clinical studies of intranasal esketamine with clarithromycin and rifampicin and a published DDI study of oral esketamine with ticlopidine. The induction potential of esketamine toward CYP3A4 was also well captured. Inhibition of intranasal esketamine in the presence of ticlopidine was predicted to be not clinically relevant. Different scenarios tested with esketamine as a CYP3A4 perpetrator of midazolam also predicted the absence of clinically relevant CYP3A4 interactions. CONCLUSION: This PBPK model of the intranasal route adequately described the pharmacokinetics and DDI of intranasal esketamine/noresketamine with potential perpetrator and victim drugs. This work was used to support regulatory submissions of SPRAVATO®.


Assuntos
Citocromo P-450 CYP3A , Modelos Biológicos , Administração Intranasal , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos , Ketamina , Preparações Farmacêuticas/metabolismo , Estudos Prospectivos , Ticlopidina
11.
Clin Pharmacol Ther ; 112(4): 770-781, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34862964

RESUMO

The International Consortium for Innovation and Quality (IQ) Physiologically Based Pharmacokinetic (PBPK) Modeling Induction Working Group (IWG) conducted a survey across participating companies around general strategies for PBPK modeling of induction, including experience with its utility to address various questions, regulatory interactions, and regulatory acceptance. The results highlight areas where PBPK modeling is used with high confidence and identifies opportunities where confidence is lower and further evaluation is needed. To enhance the survey results, the PBPK-IWG also collected case studies and analyzed recent literature examples where PBPK models were applied to predict CYP3A induction-mediated drug-drug interactions. PBPK modeling of induction has evolved and progressed significantly, proving to have great potential to accelerate drug discovery and development. With the aim of enabling optimal use for new molecular entities that are either substrates and/or inducers of CYP3A, the PBPK-IWG proposes initial workflows for PBPK application, discusses future trends, and identifies gaps that need to be addressed.


Assuntos
Citocromo P-450 CYP3A , Modelos Biológicos , Simulação por Computador , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Humanos , Fluxo de Trabalho
12.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1107-1118, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273250

RESUMO

Erdafitinib is a potent oral pan-fibroblast growth factor receptor inhibitor being developed as oncology drug for patients with alterations in the fibroblast growth factor receptor pathway. Erdafitinib binds preferentially to α1-acid glycoprotein (AGP) and is primarily metabolized by cytochrome P450 (CYP) 2C9 and 3A4. This article describes a physiologically based pharmacokinetic (PBPK) model for erdafitinib to assess the drug-drug interaction (DDI) potential of CYP3A4 and CYP2C9 inhibitors and CYP3A4/CYP2C9 inducers on erdafitinib pharmacokinetics (PK) in patients with cancer exhibiting higher AGP levels and in populations with different CYP2C9 genotypes. Erdafitinib's DDI potential as a perpetrator for transporter inhibition and for time-dependent inhibition and/or induction of CYP3A was also evaluated. The PBPK model incorporated input parameters from various in vitro and clinical PK studies, and the model was verified using a clinical DDI study with itraconazole and fluconazole. Erdafitinib clearance in the PBPK model consisted of multiple pathways (CYP2C9/3A4, renal, intestinal; additional hepatic clearance), making the compound less susceptible to DDIs. In poor-metabolizing CYP2C9 populations carrying the CYP2C9*3/*3 genotype, simulations shown clinically relevant increase in erdafitinib plasma concentrations. Simulated luminal and enterocyte concentration showed potential risk of P-glycoprotein inhibition with erdafitinib in the first 5 h after dosing, and simulations showed this interaction can be avoided by staggering erdafitinib and digoxin dosing. Other than a simulated ~ 60% exposure reduction with strong CYP3A/2C inducers such as rifampicin, other DDI liabilities were minimal and considered not clinically relevant.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Pirazóis/farmacocinética , Quinoxalinas/farmacocinética , Antineoplásicos/farmacocinética , Citocromo P-450 CYP2C9/efeitos dos fármacos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/genética , Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Interações Medicamentosas , Genótipo , Humanos , Orosomucoide/metabolismo
13.
Clin Transl Sci ; 14(1): 29-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702198

RESUMO

On April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting. PBPK may be considered the gold standard for pediatric PK prediction, but still it is important to know that simpler methods, such as allometry, allometry combined with maturation function, functions based on the elimination pathway, or linear models, also perform well, depending on the age range or the mechanisms involved. Knowledge from different methods and information sources should be combined (e.g., microdosing can reveal early read-out of age-related differences in exposure), and such results can be a value to verify models. To further establish best practices for dose setting in pediatrics, more in vitro and in vivo research is needed on aspects such as age-related changes in the exposure-response relationship and the impact of disease on PK. New information coupled with the refining of model-based drug development approaches will allow faster targeting of intended age groups and allow more efficient design of pediatric clinical trials.


Assuntos
Relação Dose-Resposta a Droga , Taxa de Depuração Metabólica/fisiologia , Modelos Biológicos , Fatores Etários , Criança , Desenvolvimento Infantil/fisiologia , Ensaios Clínicos como Assunto , Congressos como Assunto , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Projetos de Pesquisa , Distribuição Tecidual
14.
Antimicrob Agents Chemother ; 54(11): 4534-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20823290

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants, young children, elderly persons, and severely immunocompromised patients. Effective postinfection treatments are not widely available, and currently there is no approved vaccine. TMC353121 is a potent RSV fusion inhibitor in vitro, and its ability to reduce viral loads in vivo was demonstrated in cotton rats following prophylactic intravenous administration. Here, the pharmacokinetics of TMC353121 in the cotton rat, which is semipermissive for RSV replication, were further explored to build a pharmacokinetic-pharmacodynamic (PK-PD) model and to estimate the plasma drug levels needed for significant antiviral efficacy. TMC353121 reduced the viral titers in bronchoalveolar lavage fluid in a dose-dependent manner after a single subcutaneous administration and intranasal RSV inoculation 24 h after compound administration. The viral titer reduction and plasma TMC353121 concentration at the time of RSV inoculation were well described using a simple E(max) model with a maximal viral titer reduction (E(max)) of 1.5 log(10). The plasma drug level required to achieve 50% of the E(max) (200 ng/ml) was much higher than the 50% inhibitory concentration observed in vitro in HeLaM cells (0.07 ng/ml). In conclusion, this simple PK-PD approach may be useful in predicting efficacious exposure levels for future RSV inhibitors.


Assuntos
Antivirais/farmacocinética , Antivirais/uso terapêutico , Benzimidazóis/farmacocinética , Benzimidazóis/uso terapêutico , Piridinas/farmacocinética , Piridinas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Animais , Antivirais/sangue , Benzimidazóis/sangue , Líquido da Lavagem Broncoalveolar/química , Feminino , Masculino , Piridinas/sangue , Ratos , Ratos Sprague-Dawley , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sigmodontinae
15.
Clin Pharmacokinet ; 59(9): 1149-1160, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32338346

RESUMO

BACKGROUND: Apalutamide is predominantly metabolized via cytochrome P450 (CYP) 2C8 and CYP3A4, whose contributions change due to autoinduction with repeated dosing. OBJECTIVES: We aimed to predict CYP3A4 and CYP2C8 inhibitor/inducer effects on the steady-state pharmacokinetics of apalutamide and total potency-adjusted pharmacologically active moieties, and simulated drug-drug interaction (DDI) between single-dose and repeated-dose apalutamide coadministered with known inhibitors/inducers. METHODS: We applied physiologically based pharmacokinetic modeling for our predictions, and simulated DDI between single-dose and repeated-dose apalutamide 240 mg coadministered with ketoconazole, gemfibrozil, or rifampicin. RESULTS: The estimated contribution of CYP2C8 and CYP3A4 to apalutamide metabolism is 58% and 13%, respectively, after single dosing, and 40% and 37%, respectively, at steady-state. Apalutamide exposure is predicted to increase with ketoconazole (maximum observed concentration at steady-state [Cmax,ss] 38%, area under the plasma concentration-time curve at steady-state [AUCss] 51% [pharmacologically active moieties, Cmax,ss 23%, AUCss 28%]) and gemfibrozil (Cmax,ss 32%, AUCss 44% [pharmacologically active moieties, Cmax,ss 19%, AUCss 23%]). Rifampicin exposure is predicted to decrease apalutamide (Cmax,ss 25%, AUCss 34% [pharmacologically active moieties, Cmax,ss 15%, AUCss 19%]). CONCLUSIONS: Based on our simulations, no major changes in the pharmacokinetics of apalutamide or pharmacologically active moieties are expected with strong CYP3A4/CYP2C8 inhibitors/inducers. This observation supports the existing recommendations that no dose adjustments are needed during coadministration of apalutamide and the known inhibitors or inducers of CYP2C8 or CYP3A4.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacocinética , Indutores do Citocromo P-450 CYP2C8 , Inibidores do Citocromo P-450 CYP3A , Tioidantoínas/farmacocinética , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos
16.
Eur J Drug Metab Pharmacokinet ; 45(1): 101-111, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31673875

RESUMO

BACKGROUND AND OBJECTIVES: Erdafitinib, an oral selective pan-fibroblast growth factor receptor (FGFR) kinase inhibitor, is primarily metabolized by cytochrome P450 (CYP) 2C9 and 3A4. The aim of this phase 1 study was to assess the pharmacokinetics and safety of erdafitinib in healthy participants when coadministered with fluconazole (moderate CYP2C9 and CYP3A inhibitor), and itraconazole (a strong CYP3A4 and P-glycoprotein inhibitor). The effect of CYP2C9 genotype variants (*1/*1, *1/*2, *1/*3) on the pharmacokinetics of erdafitinib was also investigated. METHODS: In this open-label, parallel-group, single-center study, eligible healthy adults were randomized by CYP2C9 genotype to receive Treatment A (single oral dose of erdafitinib 4 mg) on day 1, Treatment B (fluconazole 400 mg/day orally) on days 1-11, or Treatment C (itraconazole 200 mg/day orally) on days 1-11. Healthy adults randomized to Treatment B and C received a single oral 4-mg dose of erdafitinib on day 5. The pharmacokinetic parameters, including mean maximum plasma concentration (Cmax), area under the curve (AUC) from time 0 to 168 h (AUC168h), AUC from time 0 to the last quantifiable concentration (AUClast), and AUC from time 0 to infinity (AUC∞) were calculated from individual plasma concentration-time data using standard non-compartmental methods. RESULTS: Coadministration of erdafitinib with fluconazole increased Cmax of erdafitinib by approximately 21%, AUC168h by 38%, AUClast by 49%, and AUC∞ by 48% while coadministration with itraconazole resulted in no change in erdafitinib Cmax and increased AUC168h by 20%, AUClast by 33% and AUC∞ by 34%. Erdafitinib exposure was comparable between participants with CYP2C9 *1/*2 or *1/*3 and with wild-type CYP2C9 genotype. The ratio of total amount of erdafitinib excreted in the urine (inhibited to non-inhibited) was 1.09, the ratio of total amount of excreted metabolite M6 was 1.21, and the ratio of the metabolite to parent ratio in the urine was 1.11, when coadministration of erdafitinib with itraconazole was compared with single-dose erdafitinib. Treatment-emergent adverse events (TEAEs) were generally Grade 1 or 2 in severity; the most commonly reported TEAE was headache. No safety concerns were identified with single-dose erdafitinib when administered alone and in combination with fluconazole or itraconazole in healthy adults. CONCLUSION: Coadministration of fluconazole or itraconazole or other moderate/strong CYP2C9 or CYP3A4 inhibitors may increase exposure to erdafitinib in healthy adults and thus may warrant erdafitinib dose reduction or use of alternative concomitant medications with no or minimal CYP2C9 or CYP3A4 inhibition potential. TRIAL REGISTRATION: ClinicalTrials.gov identifier number: NCT03135106.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Interações Medicamentosas , Fluconazol/farmacologia , Itraconazol/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/farmacocinética , Quinoxalinas/farmacocinética , Adulto , Área Sob a Curva , Citocromo P-450 CYP2C9/genética , Combinação de Medicamentos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/urina , Pirazóis/efeitos adversos , Pirazóis/sangue , Pirazóis/urina , Quinoxalinas/efeitos adversos , Quinoxalinas/sangue , Quinoxalinas/urina , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
17.
Adv Ther ; 37(4): 1703, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32133584

RESUMO

In the original article Ninth and Tenth authors were incorrectly omitted from the author group. The correct author group is Joris Vandenbossche, Wolfgang Jessner, Maarten van den Boer, Jeike Biewenga, Jan Martin Berke, Willem Talloen, Loeckie De Zwart, Jan Snoeys, Koen Vandyck, John Fry, Jeysen Yogaratnam.

18.
Adv Ther ; 36(9): 2450-2462, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267367

RESUMO

INTRODUCTION: Hepatitis B viral capsid assembly is an attractive target for new antiviral treatments. JNJ-56136379 (JNJ-6379) is a potent capsid assembly modulator in vitro with a dual mode of action. In Part 1 of this first-in-human study in healthy adults, the pharmacokinetics (PK), safety and tolerability of JNJ-6379 were evaluated following single ascending and multiple oral doses. METHODS: This was a double-blind, randomized, placebo-controlled study in 30 healthy adults. Eighteen subjects were randomized to receive single doses of JNJ-6379 (25 to 600 mg) or placebo. Twelve subjects were randomized to receive 150 mg JNJ-6379 or placebo twice daily for 2 days, followed by 100 mg JNJ-6379 or placebo daily for 10 days. RESULTS: The maximum observed plasma concentration and the area under the curve increased dose proportionally from 25 to 300 mg JNJ-6379. Following multiple dosing, steady-state conditions were achieved on day 8. Steady-state clearance was similar following single and multiple dosing, suggesting time-linear PK. All adverse events (AEs) reported were mild to moderate in severity. There were no serious AEs or dose-limiting toxicities and no apparent relationship to dose for any AE. CONCLUSION: JNJ-6379 was well tolerated in this study. Based on the safety profile and plasma exposures of JNJ-6379 in healthy subjects, a dosing regimen was selected for Part 2 of this study in patients with chronic hepatitis B. This is anticipated to achieve trough plasma exposures of JNJ-6379 at steady state of more than three times the 90% effective concentration of viral replication determined in vitro. TRIAL REGISTRATION: Clinicaltrials.gov identifier, NCT02662712. FUNDING: Janssen Pharmaceutica.


Assuntos
Antivirais/administração & dosagem , Azepinas/farmacologia , Capsídeo/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Piperidinas/farmacologia , Adulto , Área Sob a Curva , Azepinas/administração & dosagem , Azepinas/efeitos adversos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos
19.
Reprod Toxicol ; 26(1): 54-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18514481

RESUMO

With the growing experience in the conduct of juvenile toxicity studies for multiple classes of compound, the 'case-by-case' approach has become under much more pressure. Instead, a general screen or 'standard design' is now commonly expected by regulatory authorities with more routine inclusion of neurological and reproductive assessments. Minor modifications or additions can be made to the design to address specific questions according to the class of drug or intended clinical use. This drift from a 'case-by-case' approach to a 'standard design' approach is present within certain reviewing divisions of the FDA, often requesting by default a rodent and non-rodent juvenile animal study. However, juvenile animal studies should be designed thoughtfully to fulfil a purpose based on scientific rationale, with each endpoint carefully considered in terms of practicality and interpretability of data generated. Only when using the appropriate strategy and design may juvenile studies add value by (1) identifying potential safety or pharmacokinetic issues for drugs intended for paediatric use, (2) suggesting additional clinical endpoints and (3) adding new information to the product label. As the knowledge from juvenile animal studies in various species grows, a better understanding of the significance/relevance of findings will be achieved.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Pediatria/métodos , Projetos de Pesquisa/legislação & jurisprudência , Testes de Toxicidade/métodos , Fatores Etários , Animais , Animais de Laboratório , Criança , Cães , Humanos , Camundongos , Preparações Farmacêuticas/metabolismo , Ratos , Estados Unidos , United States Food and Drug Administration
20.
Reprod Toxicol ; 26(3-4): 220-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18926897

RESUMO

Knowledge of the ontogeny of the various systems involved in distribution and elimination of drugs is important for adequate interpretation of the findings during safety studies in juvenile animals. The present study was designed to collect information on plasma concentrations of total protein and albumin, enzyme activity and mRNA expression of cytochrome P450 isoenzymes (CYP1A1/2, CYP2B1/2, CYP2E1, CYP3A1/2, and CYP4A1), carboxylesterase and thyroxin glucuronidation (T4-GT) activity in liver microsomes, and mRNA expression of transporters (Mdr1a/b, Mrp1-3 and 6, Bsep and Bcrp, Oct1-2, Oat1-3 and Oatp1a4) in liver, kidney and brain tissue during development in Sprague-Dawley rats. Enzyme activities were determined by measuring the metabolism of marker substrates; expression of mRNAs was assessed using RTq-PCR. There were considerable differences in the ontogeny of the individual cytochrome P450 isoenzymes. In addition, ontogeny patterns of enzyme activity did not always parallel ontogeny patterns of mRNA expression. Ontogeny of the transporters depended on the transporter and the organ studied. Changes in mRNA expression of the various transporters during development are likely to result in altered elimination and/or tissue distribution of substrates, with concomitant changes in hepatic metabolism, renal excretion and passage through the blood-brain barrier. Consideration of the ontogeny of metabolizing enzymes and transporters may improve the design and interpretation of results of toxicity studies in juvenile animals.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Proteínas Sanguíneas/análise , Sistema Enzimático do Citocromo P-450/análise , Transportadores de Cassetes de Ligação de ATP/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/análise , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/genética , Sistema Enzimático do Citocromo P-450/genética , Feminino , Masculino , Microssomos Hepáticos/enzimologia , Proteína 1 Transportadora de Ânions Orgânicos/análise , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/análise , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA