Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mass Spectrom Rev ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530668

RESUMO

Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.

2.
Mol Pharm ; 17(7): 2390-2397, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32437164

RESUMO

Opticin is an endogenous vitreous glycoprotein that may have therapeutic potential as it has been shown that supranormal concentrations suppress preretinal neovascularization. Herein we investigated the pharmacokinetics of opticin following intravitreal injection in rabbits. To measure simultaneously concentrations of human and rabbit opticin, a selected reaction monitoring mass spectrometry assay was developed. The mean concentration of endogenous rabbit opticin in 7 uninjected eyes was measured and found to be 19.2 nM or 0.62 µg/mL. When the vitreous was separated by centrifugation into a supernatant and collagen-containing pellet, 94% of the rabbit opticin was in the supernatant. Intravitreal injection of human opticin (40 µg) into both eyes of rabbits was followed by enucleation at 5, 24, and 72 h and 7, 14, and 28 days postinjection (n = 6 at each time point) and measurement of vitreous human and rabbit opticin concentrations in the supernatant and collagen-containing pellet following centrifugation. The volume of distribution of human opticin was calculated to be 3.31 mL, and the vitreous half-life was 4.2 days. Assuming that rabbit and human opticin are cleared from rabbit vitreous at the same rate, opticin is secreted into the vitreous at a rate of 0.14 µg/day. We conclude that intravitreally injected opticin has a vitreous half-life that is similar to currently available antiangiogenic therapeutics. While opticin was first identified bound to vitreous collagen fibrils, here we demonstrate that >90% of endogenous opticin is not bound to collagen. Endogenous opticin is secreted by the nonpigmented ciliary epithelium into the rabbit vitreous at a remarkably high rate, and the turnover in vitreous is approximately 15% per day.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Proteínas da Matriz Extracelular/administração & dosagem , Proteínas da Matriz Extracelular/farmacocinética , Injeções Intravítreas/métodos , Proteoglicanas/administração & dosagem , Proteoglicanas/farmacocinética , Inibidores da Angiogênese/biossíntese , Animais , Colágeno/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/metabolismo , Meia-Vida , Humanos , Masculino , Espectrometria de Massas/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Proteoglicanas/biossíntese , Proteoglicanas/metabolismo , Coelhos , Retina/metabolismo , Corpo Vítreo/metabolismo
3.
Mol Pharm ; 17(2): 588-594, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794668

RESUMO

The mechanisms of drug clearance from the aqueous humor are poorly defined. In this study, a cocktail approach was used to simultaneously determine the pharmacokinetics of three ß-blocker agents after intracameral (ic) injection into the rabbit eyes. Aqueous humor samples were collected and analyzed using LC-MS/MS to determine drug concentrations. Pharmacokinetic parameters were obtained using a compartmental fitting approach, and the estimated clearance, volume of distribution, and half-life values were the following: atenolol (6.44 µL/min, 687 µL, and 73.87 min), timolol (19.30 µL/min, 937 µL, and 33.64 min), and betaxolol (32.20 µL/min, 1421 µL, and 30.58 min). Increased compound lipophilicity (atenolol < timolol < betaxolol) resulted in higher clearance and volume of distributions in the aqueous humor. Clearance of timolol and betaxolol is about 10 times higher than the aqueous humor outflow, demonstrating the importance of other elimination routes (e.g., uptake to iris and ciliary body and subsequent elimination via blood flow).


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Atenolol/farmacocinética , Betaxolol/farmacocinética , Injeções Intraoculares/métodos , Timolol/farmacocinética , Animais , Humor Aquoso/química , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Atenolol/administração & dosagem , Betaxolol/administração & dosagem , Cromatografia Líquida , Combinação de Medicamentos , Meia-Vida , Pressão Intraocular/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Coelhos , Espectrometria de Massas em Tandem , Timolol/administração & dosagem , Distribuição Tecidual
4.
Mol Pharm ; 16(9): 3968-3976, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31348666

RESUMO

Lens is the avascular tissue in the eye between the aqueous humor and vitreous. Drug binding to the lens might affect ocular pharmacokinetics, and the binding may also have a pharmacological role in drug-induced cataract and cataract treatment. Drug distribution in the lens has been studied in vitro with many compounds; however, the experimental methods vary, no detailed information on distribution between the lens sublayers exist, and the partition coefficients are reported rarely. Therefore, our objectives were to clarify drug localization in the lens layers and establish partition coefficients for a wide range of molecules. Furthermore, we aimed to illustrate the effect of lenticular drug binding on overall ocular drug pharmacokinetics. We studied the distribution of 16 drugs and three fluorescent dyes in whole porcine lenses in vitro with imaging mass spectrometry and fluorescence microscopy techniques. Furthermore, we determined lens/buffer partition coefficients with the same experimental setup for 28 drugs with mass spectrometry. Finally, the effect of lenticular binding of drugs on aqueous humor drug exposure was explored with pharmacokinetic simulations. After 4 h, the drugs and the dyes distributed only to the outermost lens layers (capsule and cortex). The lens/buffer partition coefficients for the drugs were low, ranging from 0.05 to 0.8. On the basis of the pharmacokinetic simulations, a high lens-aqueous humor partition coefficient increases drug exposure in the lens but does not significantly alter the pharmacokinetics in the aqueous humor. To conclude, the lens seems to act mainly as a physical barrier for drug distribution in the eye, and drug binding to the lens affects mainly the drug pharmacokinetics in the lens.


Assuntos
Corantes Fluorescentes/farmacocinética , Cristalino/efeitos dos fármacos , Absorção Ocular/fisiologia , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Área Sob a Curva , Soluções Tampão , Corantes Fluorescentes/química , Cristalino/metabolismo , Microscopia de Fluorescência , Peso Molecular , Absorção Ocular/efeitos dos fármacos , Concentração Osmolar , Preparações Farmacêuticas/química , Suínos , Distribuição Tecidual , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo
5.
Hum Mol Genet ; 25(20): 4462-4472, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28172811

RESUMO

Cone photoreceptor cell death as it occurs in certain hereditary retinal diseases is devastating, with the affected patients suffering from a loss of accurate and colour vision. Regrettably, these hereditary cone diseases are still untreatable to date. Thus, the identification of substances able to block or restrain cone cell death is of primary importance. We studied the neuroprotective effects of a histone deacetylase inhibitor, Trichostatin A (TSA), in a mouse model of inherited, primary cone degeneration (cpfl1). We show that HDAC inhibition protects cpfl1 cones in vitro, in retinal explant cultures. More importantly, in vivo, a single intravitreal TSA injection significantly increased cone survival for up to 16 days post-injection. In addition, the abnormal, incomplete cone migration pattern in the cpfl1 retina was significantly improved by HDAC inhibition. These findings suggest a crucial role for HDAC activity in primary cone degeneration and highlight a new avenue for future therapy developments for cone dystrophies and retinal diseases associated with impaired cone migration.


Assuntos
Modelos Animais de Doenças , Ácidos Hidroxâmicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/tratamento farmacológico , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Fármacos Neuroprotetores/uso terapêutico
7.
Mol Pharm ; 13(9): 2906-11, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-26674753

RESUMO

Systemically circulating drugs may distribute to ocular tissues across the blood-ocular barriers. Ocular distribution is utilized in the treatment of ocular diseases with systemic medications, but ocular delivery of systemic drugs and xenobiotics may also lead to adverse ocular effects. Ocular distribution after systemic drug administration has not been predicted or modeled. In this study, distribution clearance between vitreous and plasma was obtained from a previous QSPR model for clearance of intravitreal drugs. These values were used in a pharmacokinetic simulation model to describe entry of unbound drug from plasma to vitreous. The simulation models predicted ocular distribution of 10 systemic drugs in rabbit eyes within 1.96 mean fold error and the distribution of cefepime from plasma to vitreous in humans. This is the first attempt to predict ocular distribution of systemic drugs. Reliable predictions were obtained using systemic concentrations of unbound drug, computational value of ocular distribution clearance, and a simple pharmacokinetic model. This approach can be used in drug discovery to estimate ocular drug exposure at an early stage.


Assuntos
Soluções Oftálmicas/farmacocinética , Corpo Vítreo/metabolismo , Animais , Humanos , Modelos Biológicos , Modelos Teóricos , Coelhos
8.
Exp Eye Res ; 137: 111-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25975234

RESUMO

Intravitreal administration is the method of choice in drug delivery to the retina and/or choroid. Rabbit is the most commonly used animal species in intravitreal pharmacokinetics, but it has been criticized as being a poor model of human eye. The critique is based on some anatomical differences, properties of the vitreous humor, and observed differences in drug concentrations in the anterior chamber after intravitreal injections. We have systematically analyzed all published information on intravitreal pharmacokinetics in the rabbit and human eye. The analysis revealed major problems in the design of the pharmacokinetic studies. In this review we provide advice for study design. Overall, the pharmacokinetic parameters (clearance, volume of distribution, half-life) in the human and rabbit eye have good correlation and comparable absolute values. Therefore, reliable rabbit-to-man translation of intravitreal pharmacokinetics should be feasible. The relevant anatomical and physiological parameters in rabbit and man show only small differences. Furthermore, the claimed discrepancy between drug concentrations in the human and rabbit aqueous humor is not supported by the data analysis. Based on the available and properly conducted pharmacokinetic studies, the differences in the vitreous structure in rabbits and human patients do not lead to significant pharmacokinetic differences. This review is the first step towards inter-species translation of intravitreal pharmacokinetics. More information is still needed to dissect the roles of drug delivery systems, disease states, age and ocular manipulation on the intravitreal pharmacokinetics in rabbit and man. Anyway, the published data and the derived pharmacokinetic parameters indicate that the rabbit is a useful animal model in intravitreal pharmacokinetics.


Assuntos
Publicações Periódicas como Assunto/normas , Doenças Retinianas/metabolismo , Corpo Vítreo/química , Animais , Modelos Animais de Doenças , Humanos , Coelhos , Doenças Retinianas/tratamento farmacológico
9.
Eur J Pediatr ; 174(11): 1511-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25982340

RESUMO

UNLABELLED: Human parechoviruses (HPeV) have been recently recognized as important viral agents in paediatric infections. The aims of this study were to investigate the HPeV infection prevalence in infants <1 month in Spain and, secondly, to analyse the clinical and epidemiological characteristics of the infected patients compared with those infected by enterovirus (EV). Infants <1 month with neurological or systemic symptoms were included in a multicentre prospective study. EV and HPeV detection by RT-PCR and genotyping were performed in cerebrospinal fluids (CSF), sera or throat swabs. Out of the total of 84 infants studied during 2013, 32 were EV positive (38 %) and 9 HPeV positive (11 %). HPeV-3 was identified in eight cases and HPeV-5 in one. Mean age of HPeV-positive patients was 18 days. Diagnoses were fever without source (FWS) (67 %), clinical sepsis (22 %) and encephalitis (11 %). Leukocytes in blood and CSF were normal. Pleocytosis (p = 0.03) and meningitis (p = 0.001) were significantly more frequent in patients with EV infections than with HPeV. CONCLUSIONS: Although HPeV-3 infections were detected less frequently than EV, they still account for approximately 10 % of the cases analysed in infants younger than 1 month. HPeV-3 was mainly associated with FWS and without leukocytosis and pleocytosis in CSF. In these cases, HPeV screening is desirable to identify the aetiologic agent and prevent unnecessary treatment and prolonged hospitalization.


Assuntos
Encefalite Viral/epidemiologia , Infecções por Enterovirus/epidemiologia , Enterovirus/isolamento & purificação , Parechovirus/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Viremia/epidemiologia , Encefalite Viral/diagnóstico , Encefalite Viral/virologia , Enterovirus/genética , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/virologia , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Parechovirus/genética , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Prevalência , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Espanha/epidemiologia , Viremia/diagnóstico , Viremia/virologia
11.
Eur J Pharm Biopharm ; 188: 78-88, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178941

RESUMO

PURPOSE: To develop a population pharmacokinetic/pharmacodynamic model (popPKPD) of intravitreal bevacizumab treatment for neovascular age-related macular degeneration (nAMD) patients to learn about the PK/PD relationship and utilise it for dosing regimen decisions on future nAMD patients. METHODS: The Greater Manchester Avastin for Neovascularisation (GMAN) randomised clinical trial data was retrospectively utilised, and the best-corrected visual acuity (BCVA) and central macular retinal thickness (CRT, measured by optical coherence tomography) were the PD inputs to the model. Using the nonlinear mixed-effects method, the best PKPD structural model was investigated, and the clinical significance of the two different dosing treatment regimens (as-needed versus routine) was evaluated. RESULTS: A structural model to describe the change of BCVA from the baseline of nAMD patients was successfully obtained based on the turnover PD model concept (drug stimulates the "visual acuity response production"). The popPKPD model and simulation indicate that the routine regimen protocol improves patient visual outcome compared to the as-needed protocol. For the change in CRT, the turnover structural PKPD model was too demanding to fit to the given clinical data. CONCLUSIONS: This is the first popPKPD attempt in nAMD treatment that shows the potential of this strategy to understand/inform the dosing regimen. Clinical trials with richer PD data will provide the means to build more robust models.


Assuntos
Degeneração Macular , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Estudos Retrospectivos , Resultado do Tratamento , Injeções Intravítreas , Bevacizumab , Degeneração Macular/tratamento farmacológico , Ranibizumab , Degeneração Macular Exsudativa/induzido quimicamente , Degeneração Macular Exsudativa/tratamento farmacológico
12.
Int J Pharm ; 642: 123183, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37369289

RESUMO

Identifying critical attributes for complex locally acting ophthalmic formulations and establishing in vitro-in vivo correlations can facilitate selection of appropriate thresholds for formulation changes that reflect lack of impact on in vivo performance. In this study the marketed antiglaucoma product Azopt® (1% brinzolamide suspension) and five other brinzolamide formulations varying in particle size distributions and apparent viscosities were topically administered in rabbits, and their ocular pharmacokinetics was determined in multiple ocular tissues. Statistical evaluation with ANOVA showed no significant differences between the formulations in the peak drug concentration (Cmax) in the aqueous humor and iris-ciliary body. As a post-hoc analysis, the within animal and total variability was determined for Cmax in the aqueous humor and iris-ciliary body. Based on the observed variability, we investigated the sample size needed for two types of study designs to observe statistically significant differences in Cmax. For the sample size calculations, assuming both 25% and 50% true differences in Cmax between two formulations, two study designs were compared: paired-eye dosing design (one formulation in one eye and another formulation in the other eye of the same animal at the same time) versus parallel-group design. The number of rabbits needed in the paired-eye dosing design are much lower than in the parallel-group design. For example, when the true difference in aqueous humor Cmax is 25%, nine rabbits are required in the paired-eye design versus seventy rabbits (35 per treatment) in the parallel-group design to observe a statistically significant difference with a power of 80%. Therefore, the proposed paired-eye dosing design is a viable option for the design of pharmacokinetic studies comparing ophthalmic products to determine the impact of formulation differences.


Assuntos
Olho , Sulfonamidas , Animais , Coelhos , Suspensões , Tamanho da Amostra , Humor Aquoso , Soluções Oftálmicas
13.
J Clin Microbiol ; 50(11): 3451-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875895

RESUMO

The purpose of this study was to develop a high-throughput method for the identification of pneumococcal capsular types. Multiplex PCR combined with fragment analysis and automated fluorescent capillary electrophoresis (FAF-mPCR) was utilized. FAF-mPCR was composed of only 3 PCRs for the specific detection of serotypes 1, 2, 3, 4, 5, 6A/6B, 6C, 7F/7A, 7C/(7B/40), 8, 9V/9A, 9N/9L, 10A, 10F/(10C/33C), 11A/11D/11F, 12F/(12A/44/46), 13, 14, 15A/15F, 15B/15C, 16F, 17F, 18/(18A/18B/18C/18F), 19A, 19F, 20, 21, 22F/22A, 23A, 23B, 23F, 24/(24A/24B/24F), 31, 33F/(33A/37), 34, 35A/(35C/42), 35B, 35F/47F, 38/25F, and 39. In order to evaluate the assay, all invasive pneumococcal isolates (n = 394) characterized at Hospital Sant Joan de Déu, Barcelona, Spain, from July 2010 to July 2011 were included in this study. The Wallace coefficient was used to evaluate the overall agreement between two typing methods (Quellung reaction versus FAF-mPCR). A high concordance with Quellung was found: 97.2% (383/394) of samples. The Wallace coefficient was 0.981 (range, 0.965 to 0.997). Only 11 results were discordant with the Quellung reaction. However, latex reaction and Quellung results of the second reference laboratory agreed with FAF-mPCR for 9 of these 11 strains (82%). Therefore, we considered that only 2 of 394 strains (0.5%) were not properly characterized by the new assay. The automation of the process allowed the typing of 30 isolates in a few hours with a lower cost than that of the Quellung reaction. These results indicate that FAF-mPCR is a good method to determine the capsular serotype of Streptococcus pneumoniae.


Assuntos
Eletroforese Capilar/métodos , Tipagem Molecular/métodos , Streptococcus pneumoniae/classificação , Automação Laboratorial/métodos , Fluorescência , Humanos , Infecções Pneumocócicas/microbiologia , Sensibilidade e Especificidade , Sorotipagem/métodos , Espanha , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação
15.
Pharm Res ; 29(12): 3302-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22777295

RESUMO

PURPOSE: To build a fast, user-friendly computational model to predict the intravitreal half-lives of drug-like compounds. METHODS: We used multivariate analysis to build intravitreal half-life models using two data sets, one with experimental data derived from both pigmented and albino rabbits and another including only data from experiments with albino rabbits. RESULTS: The final models had a Q(2) value of 0.65 and 0.75 for the mixed and albino rabbit models, respectively. The models performed well in predicting the intravitreal half-life of an external test set. In addition, the models are physiologically interpretable, containing mainly hydrogen bonding and lipophilicity descriptors. CONCLUSION: The developed models enable reliable predictions of intravitreal half-lives for use in the early drug development stages, without the need for prior experimental data.


Assuntos
Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Corpo Vítreo/metabolismo , Animais , Barreira Hematorretiniana/metabolismo , Simulação por Computador , Meia-Vida , Ligação de Hidrogênio , Injeções Intravítreas , Modelos Biológicos , Análise Multivariada , Coelhos
16.
J Control Release ; 348: 760-770, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738465

RESUMO

Melanin binding of drugs is known to increase drug concentrations and retention in pigmented eye tissues. Even though the correlation between melanin binding in vitro and exposure to pigmented eye in vivo has been shown, there is a discrepancy between rapid drug release from melanin particles in vitro and the long in vivo retention in the pigmented tissues. We investigated mechanisms and kinetics of pigment-related drug retention experimentally using isolated melanin particles from porcine retinal pigment epithelium and choroid, isolated porcine eye melanosomes, and re-pigmented ARPE-19 cells in a dynamic flow system. The experimental studies were supplemented with kinetic simulations. Affinity and capacity of levofloxacin, terazosin, papaverine, and timolol binding to melanin revealed Kd values of ≈ 50-150 µM and Bmax ≈ 40-112 nmol.mg-1. The drugs were released from melanin in <1 h (timolol) or in 6-12 h (other drugs). The drugs were released slower from the melanosomes than from melanin; the experimental differences ranged from 1.2-fold (papaverine) to 7.4-fold (timolol). Kinetic simulations supported the role of the melanosomal membrane in slowing down the release of melanin binders. In release studies from the pigmented ARPE-19 cells, drugs were released from the cellular melanin to the extracellular space in ≈ 1 day (timolol) and ≈ 11 days (levofloxacin), i.e., much slower than the release from melanin or melanosomes. Simulations of drug release from pigmented cells in the flow system matched the experimental data and enabled further sensitivity analyses. The simulations demonstrated a significant prolongation of drug retention in the cells as a function of decreasing drug permeability in the melanosomal membranes and increasing melanin content in the cells. Overall, we report the impact of cellular factors in prolonging drug retention and release from melanin-containing cells. These data and simulations will facilitate the design of melanin binding drugs with prolonged ocular actions.


Assuntos
Melaninas , Timolol , Animais , Simulação por Computador , Levofloxacino , Melaninas/química , Papaverina/metabolismo , Epitélio Pigmentado da Retina , Suínos
17.
Eur J Pharm Biopharm ; 172: 53-60, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121080

RESUMO

Rapid precorneal loss of topically applied eye drops limits ocular drug absorption. Controlling release and precorneal residence properties of topical formulations may improve ocular drug bioavailability and duration of action. In this study, we evaluated in vivo ocular pharmacokinetics of dexamethasone in rabbits after application of a drug solution (0.01%), suspension (Maxidex® 0.1%), and hydrogels of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc) copolymers. The rabbits received a single eyedrop (solution or suspension) or dexamethasone-loaded hydrogel topically. Dexamethasone in tear fluid was sampled with glass capillaries and quantitated by LC-MS/MS. Higher dexamethasone exposure (AUC) in the tear fluid was observed with the suspension (≈3.6-fold) and hydrogel (12.8-fold) as compared to the solution. During initial 15 min post-application, the highest AUC of dissolved dexamethasone was seen after hydrogel application (368 min*µg/mL) followed by suspension (109.9 min*µg/mL) and solution (28.7 min*µg/mL. Based on kinetic simulations, dexamethasone release from hydrogels in vivo and in vitro is comparable. Our data indicate that prolonged exposure of absorbable dexamethasone in tear fluid is reached with hydrogels and suspensions. Pharmacokinetic understanding of formulation behavior in the lacrimal fluid helps in the design of dexamethasone delivery systems with improved ocular absorption and prolonged duration of action.


Assuntos
Hidrogéis , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Dexametasona , Liberação Controlada de Fármacos , Cinética , Coelhos , Suspensões
18.
Int J Pharm ; 620: 121725, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405282

RESUMO

Choroidal neovascularization (CNV) is a prevalent vision-threatening vascular disorder in aging population. CNV is associated with several diseases in the posterior segment of the eye such as age-related macular degeneration (AMD). In this study we developed sunitinib-loaded liposomes to block the neovascularization signalling pathway through inhibition of tyrosine kinase of vascular endothelial growth factor receptors (VEGFRs). Liposomal sunitinib formulations were prepared by thin film hydration method and studied for their encapsulation efficiency (EE), loading capacity (LC) and drug release profile in buffer andvitreous. Our finding showed that the liposomes (mean size 104 nm) could effectively entrap sunitinib (EE ≈ 95%) at relatively high loading capacity (LC ≈ 5%) and release sunitinib over at least 3 days. Intravitreal sunitinib-loaded liposomes revealed inhibitory effect on established neovascularization in laser-induced CNV mouse model while the intravitreal injection of sunitinib solubilized with cyclodextrin was inefficient in management of neovascularization. Accordingly, liposomal sunitinib is a promising drug delivery system that should be further studied to inhibit the CNV related to AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Animais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Injeções Intravítreas , Lipossomos/uso terapêutico , Degeneração Macular/tratamento farmacológico , Camundongos , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Pharm ; 615: 121515, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091006

RESUMO

Topical corticosteroids are used to treat inflammation of the anterior segment. Due to their low water-solubility, they are often formulated as suspensions, but ocular bioavailability of the suspensions is not known. Herein, ocular pharmacokinetics of dexamethasone in albino rabbits was investigated following intracameral administration of dexamethasone solution and topical administration of three commercial suspensions: Maxidex®, TobraDex®, and TobraDexST®. Dexamethasone concentrations in tear fluid, cornea, aqueous humor, conjunctiva and iris-ciliary body were determined. Non-compartmental analysis was performed to estimate the pharmacokinetic parameters of dexamethasone. Following intracameral administration, the clearance and the apparent volume of distribution were estimated to be 13.6 µL/min and 990 µL, respectively. After topical administration, the absolute aqueous humor bioavailability for dexamethasone (<2%) is being reported for the first time. The highest value was obtained for TobraDexST® followed by Maxidex® and TobraDex®. This study provides for the first-time comprehensive and quantitative ocular pharmacokinetic parameters (including absolute bioavailability) for topically instilled dexamethasone suspensions. Furthermore, the new intracameral pharmacokinetic parameters allow a rational and quantitative basis for the design of improved ocular dexamethasone delivery systems.


Assuntos
Humor Aquoso , Olho , Administração Tópica , Animais , Disponibilidade Biológica , Córnea , Dexametasona , Soluções Oftálmicas , Coelhos , Suspensões
20.
Int J Pharm ; 613: 121361, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896561

RESUMO

Quantitation of ocular drug metabolism is important, but only sparse data is currently available. Herein, the pharmacokinetics of four drugs, substrates of metabolizing enzymes, was investigated in albino rabbit eyes after intracameral and intravitreal administrations. Acetaminophen, brimonidine, cefuroxime axetil, and sunitinib and their corresponding metabolites were quantitated in the cornea, iris-ciliary body, aqueous humor, lens, vitreous humor, and neural retina with LC-MS/MS analytics. Non-compartmental analysis was employed to estimate the pharmacokinetic parameters of the parent drugs and metabolites. The area under the curve (AUC) values of metabolites were 12-70 times lower than the AUC values of the parent drugs in the tissues with the highest enzymatic activity. The ester prodrug cefuroxime axetil was an exception because it was efficiently and quantitatively converted to cefuroxime in the ocular tissues. In contrast to the liver, sulfotransferases, aldehyde oxidase, and cytochrome P450 3A activities were low in the eye and they had negligible impact on ocular drug clearance. With the exception of esterase substrates, metabolism seems to be a minor player in ocular pharmacokinetics. However, metabolites might contribute to ocular toxicity, and drug metabolism in various eye tissues should be investigated and understood thoroughly.


Assuntos
Preparações Farmacêuticas , Animais , Cromatografia Líquida , Coelhos , Retina , Espectrometria de Massas em Tandem , Corpo Vítreo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA