Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Robot ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38717834

RESUMO

Soft pneumatic actuators are used to steer soft growing "vine" robots while being flexible enough to undergo the tip eversion required for growth. In this study, we compared the performance of three types of pneumatic actuators in terms of their ability to perform eversion, quasi-static bending, dynamic motion, and force output: the pouch motor, the cylindrical pneumatic artificial muscle (cPAM), and the fabric pneumatic artificial muscle (fPAM). The pouch motor is advantageous for prototyping owing to its simple manufacturing process. The cPAM exhibits superior bending behavior and produces the highest forces, whereas the fPAM actuates fastest and everts at the lowest pressure. We evaluated a range of dimensions for each actuator type. Larger actuators can produce more significant deformations and forces, but smaller actuators inflate faster and can evert at a lower pressure. Because vine robots are lightweight, the effect of gravity on the functionality of different actuators is minimal. We developed a new analytical model that predicts the pressure-to-bending behavior of vine robot actuators. Using the actuator results, we designed and demonstrated a 4.8 m long vine robot equipped with highly maneuverable 60 × 60 mm cPAMs in a three-dimensional obstacle course. The vine robot was able to move around sharp turns, travel through a passage smaller than its diameter, and lift itself against gravity.

2.
Soft Robot ; 6(5): 657-663, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173562

RESUMO

Soft and compliant robotic systems have the potential to interact with humans and complex environments in more sophisticated ways than rigid robots. The majority of the state-of-the art soft robots are fabricated with silicone casting. This method is able to produce robust robotic parts, yet its results are difficult to quantify and replicate. Silicone casting also limits design complexity as well as customization due to the need to make new molds. As a result, most designs are tailored for simple, individual tasks, that is, bending, gripping, and crawling. To address more complex engineering challenges, this work presents soft robots that are fabricated by using multi-material three-dimensional printing. Instead of monolithic designs, we propose a pneumatic modular toolkit consisting of a bending and an extending appendage, as well as rigid building blocks. They are assembled to achieve different tasks. We show that the performance of both appendages is (1) repeatable, that is, the same internal pressure results in the same rotation or extension across multiple specimens and repetitions, and (2) predictable, that is, the respective deformations can be modeled by using finite element analysis. Using multiple instances of both building blocks, we demonstrate the versatility of this toolkit by assembling and actuating a gripper and a crawling caterpillar. The reliability of the mechanics of the building blocks and the assembled robots show that this simple toolkit can serve as a basis for the next generation of soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA