RESUMO
Nutrients released through herbivore feces have the potential to influence plant-available nutrients and affect primary productivity. However, herbivore species use nutrients in set stoichiometric ratios that vary with body size. Such differences in the ratios at which nutrients are used leads to differences in the ratios at which nutrients are deposited through feces. Thus, local environmental factors that affect the average body size of an herbivore community (such as predation risk and food availability) influence the ratios at which fecal nutrients are supplied to plants. Here, we assess the relationship between herbivore body size and the nitrogen-to-phosphorus ratios of herbivore feces. We examine how shifts in the average body size of an herbivore community alter the ratios at which nitrogen and phosphorus are supplied to plants and test whether such differences in the stoichiometry of nutrient supply propagate through plants. We show that dung from larger-bodied herbivores contain lower quantities of phosphorus per unit mass and were higher in N:P ratio. We demonstrate that spatial heterogeneity in visibility (a proxy for predation risk and/or food availability) and rainfall (a proxy for food availability), did not affect the overall amount of feces deposited but led to changes in the average body size of the defecating community. Feces deposited in areas of higher rainfall and reduced visibility originated from larger herbivores and were higher in N:P ratios. This indicates that processes that change the size distribution of herbivore communities, such as predation or size-biased extinction, have the potential to alter the nutrient landscape for plants.
Assuntos
Tamanho Corporal , Fezes/química , Nitrogênio/química , Fósforo/química , Animais , Pradaria , Mamíferos , África do SulRESUMO
South Africa's academic publishing history has been profoundly influenced by its colonial heritage. This is reflected in the publication of Transactions of the South African Philosophical Society (later, the Royal Society of South Africa) from 1878. Although the Society and journal sought to promote original research about South Africa, it was modelled after the Royal Society in London and formed part of an imperial scientific community. As the local higher education institutions grew more independent and research-focused, local scholarly publishing developed as well, with university presses playing an increasingly important role. The University of South Africa (Unisa) Press started publishing departmental journals in the 1950s, with a focus on journals that 'speak to the student', and it is today the only South African university press with an active journals publishing programme. As external funding declined and the country became intellectually isolated in the high apartheid period, the Press managed to attract journals that could no longer be subsidized by learned societies and other universities. More recently, new co-publishing arrangements have brought South African journals back into an international intellectual community. Although some argue that this constitutes a re-colonization of South African knowledge production, it is also an innovative strategy for positioning local research in a global context.
Assuntos
Publicações Periódicas como Assunto/história , Editoração/história , Políticas Editoriais , História do Século XIX , História do Século XX , História do Século XXI , Sociedades Científicas/história , África do SulRESUMO
Rewilding is a restoration approach that aims to promote self-regulating complex ecosystems by restoring non-human ecological processes while reducing human control and pressures. Rewilding is forward-looking in that it aims to enhance functionality for biodiversity, accepting and indeed promoting the dynamic nature of ecosystems, rather than fixating on static composition or structure. Rewilding is thus especially relevant in our epoch of increasingly novel biosphere conditions, driven by strong human-induced global change. Here, we explore this hypothesis in the context of trophic rewilding - the restoration of trophic complexity mediated by wild, large-bodied animals, known as 'megafauna'. This focus reflects the strong ecological impacts of large-bodied animals, their widespread loss during the last 50,000 years and their high diversity and ubiquity in the preceding 50 million years. Restoring abundant, diverse, wild-living megafauna is expected to promote vegetation heterogeneity, seed dispersal, nutrient cycling and biotic microhabitats. These are fundamental drivers of biodiversity and ecosystem function and are likely to gain importance for maintaining a biodiverse biosphere under increasingly novel ecological conditions. Non-native megafauna species may contribute to these effects as ecological surrogates of extinct species or by promoting ecological functionality within novel assemblages. Trophic rewilding has strong upscaling potential via population growth and expansion of wild fauna. It is likely to facilitate biotic adaptation to changing climatic conditions and resilience to ecosystem collapse, and to curb some negative impacts of globalization, notably the dominance of invasive alien plants. Finally, we discuss the complexities of realizing the biodiversity benefits that trophic rewilding offers under novel biosphere conditions in a heavily populated world.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , AnimaisRESUMO
Megafauna (animals ≥45 kg) have probably shaped the Earth's terrestrial ecosystems for millions of years with pronounced impacts on biogeochemistry, vegetation, ecological communities and evolutionary processes. However, a quantitative global synthesis on the generality of megafauna effects on ecosystems is lacking. Here we conducted a meta-analysis of 297 studies and 5,990 individual observations across six continents to determine how wild herbivorous megafauna influence ecosystem structure, ecological processes and spatial heterogeneity, and whether these impacts depend on body size and environmental factors. Despite large variability in megafauna effects, we show that megafauna significantly alter soil nutrient availability, promote open vegetation structure and reduce the abundance of smaller animals. Other responses (14 out of 26), including, for example, soil carbon, were not significantly affected. Further, megafauna significantly increase ecosystem heterogeneity by affecting spatial heterogeneity in vegetation structure and the abundance and diversity of smaller animals. Given that spatial heterogeneity is considered an important driver of biodiversity across taxonomic groups and scales, these results support the hypothesis that megafauna may promote biodiversity at large scales. Megafauna declined precipitously in diversity and abundance since the late Pleistocene, and our results indicate that their restoration would substantially influence Earth's terrestrial ecosystems.
Assuntos
Ecossistema , Herbivoria , Animais , Biodiversidade , Solo , Evolução BiológicaRESUMO
Freshwater megafauna, such as sturgeons, giant catfishes, river dolphins, hippopotami, crocodylians, large turtles, and giant salamanders, have experienced severe population declines and range contractions worldwide. Although there is an increasing number of studies investigating the causes of megafauna losses in fresh waters, little attention has been paid to synthesising the impacts of megafauna on the abiotic environment and other organisms in freshwater ecosystems, and hence the consequences of losing these species. This limited understanding may impede the development of policies and actions for their conservation and restoration. In this review, we synthesise how megafauna shape ecological processes in freshwater ecosystems and discuss their potential for enhancing ecosystem restoration. Through activities such as movement, burrowing, and dam and nest building, megafauna have a profound influence on the extent of water bodies, flow dynamics, and the physical structure of shorelines and substrata, increasing habitat heterogeneity. They enhance nutrient cycling within fresh waters, and cross-ecosystem flows of material, through foraging and reproduction activities. Freshwater megafauna are highly connected to other freshwater organisms via direct consumption of species at different trophic levels, indirect trophic cascades, and through their influence on habitat structure. The literature documenting the ecological impacts of freshwater megafauna is not evenly distributed among species, regions, and types of ecological impacts, with a lack of quantitative evidence for large fish, crocodylians, and turtles in the Global South and their impacts on nutrient flows and food-web structure. In addition, population decline, range contraction, and the loss of large individuals have reduced the extent and magnitude of megafaunal impacts in freshwater ecosystems, rendering a posteriori evaluation more difficult. We propose that reinstating freshwater megafauna populations holds the potential for restoring key ecological processes such as disturbances, trophic cascades, and species dispersal, which will, in turn, promote overall biodiversity and enhance nature's contributions to people. Challenges for restoration actions include the shifting baseline syndrome, potential human-megafauna competition for habitats and resources, damage to property, and risk to human life. The current lack of historical baselines for natural distributions and population sizes of freshwater megafauna, their life history, trophic interactions with other freshwater species, and interactions with humans necessitates further investigation. Addressing these knowledge gaps will improve our understanding of the ecological roles of freshwater megafauna and support their full potential for facilitating the development of effective conservation and restoration strategies to achieve the coexistence of humans and megafauna.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Água Doce , AnimaisRESUMO
Large mammalian herbivores (megafauna) have experienced extinctions and declines since prehistory. Introduced megafauna have partly counteracted these losses yet are thought to have unusually negative effects on plants compared with native megafauna. Using a meta-analysis of 3995 plot-scale plant abundance and diversity responses from 221 studies, we found no evidence that megafauna impacts were shaped by nativeness, "invasiveness," "feralness," coevolutionary history, or functional and phylogenetic novelty. Nor was there evidence that introduced megafauna facilitate introduced plants more than native megafauna. Instead, we found strong evidence that functional traits shaped megafauna impacts, with larger-bodied and bulk-feeding megafauna promoting plant diversity. Our work suggests that trait-based ecology provides better insight into interactions between megafauna and plants than do concepts of nativeness.
Assuntos
Ecossistema , Extinção Biológica , Herbivoria , Espécies Introduzidas , Mamíferos , Plantas , Animais , Ecologia , Herbivoria/fisiologia , Filogenia , Conservação dos Recursos NaturaisRESUMO
While human-driven biological invasions are rapidly spreading, finding scalable and effective control methods poses an unresolved challenge. Here, we assess whether megaherbivores-herbivores reaching ≥1,000 kg of body mass-offer a nature-based solution to plant invasions. Invasive plants are generally adapted to maximize vegetative growth. Megaherbivores, with broad dietary tolerances, could remove large biomass of established plants, facilitating new plant growth. We used a massive dataset obtained from 26,838 camera stations and 158,979 vegetation plots to assess the relationships between megaherbivores, native plants and alien plants across India (~121,330 km2). We found a positive relationship between megaherbivore abundance and native plant richness and abundance, and a concomitant reduction in alien plant abundance. This relationship was strongest in protected areas with midproductive ecosystem and high megaherbivore density but it was lost in areas where thicket-forming alien plants predominated (>40% cover). By incorporating the role of ecosystem productivity, plants traits and densities of megaherbivores on megaherbivore-vegetation relationships, our study highlights a function of megaherbivores in controlling alien plant proliferation and facilitating diverse native plants in invaded ecosystems. The study shows great potential for megafauna-based trophic rewilding as a nature-based solution to counteract dominance of plant invasions.
RESUMO
Two major environmental challenges of our time are responding to climate change and reversing biodiversity decline. Interventions that simultaneously tackle both challenges are highly desirable. To date, most studies aiming to find synergistic interventions for these two challenges have focused on protecting or restoring vegetation and soils but overlooked how conservation or restoration of large wild animals might influence the climate mitigation and adaptation potential of ecosystems. However, interactions between large animal conservation and climate change goals may not always be positive. Here, we review wildlife conservation and climate change mitigation in terrestrial and marine ecosystems. We elucidate general principles about the biome types where, and mechanisms by which, positive synergies and negative trade-offs between wildlife conservation and climate change mitigation are likely. We find that large animals have the greatest potential to facilitate climate change mitigation at a global scale via three mechanisms: changes in fire regime, especially in previously low-flammability biomes with a new or intensifying fire regime, such as mesic grasslands or warm temperate woodlands; changes in terrestrial albedo, particularly where there is potential to shift from closed canopy to open canopy systems at higher latitudes; and increases in vegetation and soil carbon stocks, especially through a shift towards below-ground carbon pools in temperate, tropical and sub-tropical grassland ecosystems. Large animals also contribute to ecosystem adaptation to climate change by promoting complexity of trophic webs, increasing habitat heterogeneity, enhancing plant dispersal, increasing resistance to abrupt ecosystem change and through microclimate modification.
Assuntos
Mudança Climática , Ecossistema , Animais , Animais Selvagens , Biodiversidade , Carbono , Conservação dos Recursos Naturais , SoloRESUMO
Competitively dominant carnivore species can limit the population sizes and alter the behavior of inferior competitors. Established mechanisms that enable carnivore coexistence include spatial and temporal avoidance of dominant predator species by subordinates, and dietary niche separation. However, spatial heterogeneity across landscapes could provide inferior competitors with refuges in the form of areas with lower competitor density and/or locations that provide concealment from competitors. Here, we combine temporally overlapping telemetry data from dominant lions (Panthera leo) and subordinate African wild dogs (Lycaon pictus) with high-resolution remote sensing in an integrated step selection analysis to investigate how fine-scaled landscape heterogeneity might facilitate carnivore coexistence in South Africa's Hluhluwe-iMfolozi Park, where both predators occur at exceptionally high densities. We ask whether the primary lion-avoidance strategy of wild dogs is spatial avoidance of lions or areas frequented by lions, or if wild dogs selectively use landscape features to avoid detection by lions. Within this framework, we also test whether wild dogs rely on proactive or reactive responses to lion risk. In contrast to previous studies finding strong spatial avoidance of lions by wild dogs, we found that the primary wild dog lion-avoidance strategy was to select landscape features that aid in avoidance of lion detection. This habitat selection was routinely used by wild dogs, and especially when in areas and during times of high lion-encounter risk, suggesting a proactive response to lion risk. Our findings suggest that spatial landscape heterogeneity could represent an alternative mechanism for carnivore coexistence, especially as ever-shrinking carnivore ranges force inferior competitors into increased contact with dominant species.
Assuntos
Canidae , Carnívoros , Leões , Animais , Ecossistema , TelemetriaRESUMO
The loss of apex consumers (large mammals at the top of their food chain) is a major driver of global change [1]. Yet, research on the two main apex consumer guilds, large carnivores [2] and megaherbivores [3], has developed independently, overlooking any potential interactions. Large carnivores provoke behavioral responses in prey [1, 4], driving prey to distribute themselves within a "landscape of fear" [5] and intensify their impacts on lower trophic levels in low-risk areas [6], where they may concentrate nutrients through localized dung deposition [7, 8]. We suggest, however, that megaherbivores modify carnivore-induced trophic cascades. Megaherbivores (>1,000 kg [9]) are largely invulnerable to predation and should respond less to the landscape of fear, thereby counteracting the effects of fear-triggered trophic cascades. By experimentally clearing plots to increase visibility and reduce predation risk, we tested the collective role of both apex consumer guilds in influencing nutrient dynamics in African savanna. We evaluated whether megaherbivores could counteract a behaviorally mediated trophic cascade by redistributing nutrients that accumulate through fear-driven prey aggregations. Our experiment showed that mesoherbivores concentrated fecal nutrients in more open habitat, but that megaherbivores moved nutrients against this fear-driven nutrient accumulation by feeding within the open habitat, yet defecating more evenly across the risk gradient. This work adds to the growing recognition of functional losses that are likely to have accompanied megafaunal extinctions by contributing empirical evidence from one of the last systems with a functionally complete megaherbivore assemblage. Our results suggest that carnivore-induced trophic cascades work differently in a world of giants.
Assuntos
Tamanho Corporal , Medo , Pradaria , Herbivoria , Mamíferos/fisiologia , Comportamento Predatório , Animais , Mamíferos/psicologia , África do SulRESUMO
The loss of megafauna at the terminal Pleistocene has been linked to a wide range of Earth-system-level changes, such as altered greenhouse gas budgets, fire regimes and biome-level vegetation changes. Given these influences and feedbacks, might part of the solution for mitigating anthropogenic climate change lie in the restoration of extant megafauna to ecosystems? Here, we explore the potential role of trophic rewilding on Earth's climate system. We first provide a novel synthesis of the various ways that megafauna interact with the major drivers of anthropogenic climate change, including greenhouse gas storage and emission, aerosols and albedo. We then explore the role of rewilding as a mitigation tool at two scales: (i) current and near-future opportunities for national or regional climate change mitigation portfolios, and (ii) more radical opportunities at the global scale. Finally, we identify major knowledge gaps that complicate the complete characterization of rewilding as a climate change mitigation strategy. Our perspective is urgent since we are losing the Earth's last remaining megafauna, and with it a potential option to address climate change.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.