RESUMO
OBJECTIVE: To identify the cause of hypokalemic periodic paralysis (HOKPP) in a family whose disease is not caused by a mutation in the dihydropyridine-sensitive (DHP) receptor alpha1-subunit gene (CACNA1S). BACKGROUND: Hypokalemic periodic paralysis is primarily caused by mutations within CACNA1S. Genetic heterogeneity for HOKPP has been reported, but no other locus has been identified. METHODS: Single-stranded conformational polymorphism (SSCP) analysis and PCR direct sequencing were used to screen the skeletal muscle alpha1-sodium channel gene (SCN4A) for a mutation in our family. RESULTS: SSCP analysis showed an abnormally migrating conformer in exon 12. Direct sequencing of the conformer showed a guanine to adenine transition at position 2006 in the cDNA sequence; this results in an amino acid substitution of a highly conserved arginine (Arg) to histidine (His) at position 669. This sequence alteration segregated only with the affected members of the kindred and was not found in a panel of 100 DNA samples from healthy controls. The amino acid substitution alters the outermost positive charge in the membrane spanning segment DII/S4, which is involved in voltage sensing. CONCLUSIONS: The first arginine in DII/S4 and in DIV/S4 within the skeletal muscle sodium channel and the L-type calcium channel genie CACNA1S appear to be critical for normal function. In all four cases, Arg to His mutations result in a disease phenotype. The identification of a mutation within the skeletal muscle sodium channel resulting in hypokalemic periodic paralysis represents a novel finding.
Assuntos
Substituição de Aminoácidos/genética , Paralisia Periódica Hipopotassêmica/genética , Canais de Sódio/genética , Adulto , Sequência de Aminoácidos/genética , Arginina/genética , Eletromiografia , Histidina/genética , Humanos , Paralisia Periódica Hipopotassêmica/diagnóstico , Masculino , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Fenótipo , Polimorfismo Conformacional de Fita SimplesRESUMO
The transcriptional antitermination protein N of bacteriophage lambda binds the boxB component of the RNA enhancer nut (boxA + boxB) and the E. coli elongation factor NusA. Efficient antitermination by N requires an RNA-binding domain (amino acids 1-22) and two activating regions for antitermination: a newly identified NusA-binding region (amino acids 34-47) that suppresses NusA's enhancement of termination, and a carboxy-terminal region (amino acids 73-107) that interacts directly with RNA polymerase. Heteronuclear magnetic resonance experiments demonstrate that N is a disordered protein. Interaction with boxB RNA induces only the RNA-binding domain of N to adopt a folded conformation, while the activating regions of the protein remain disordered in the absence of their target proteins.