Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Biotechnol Bioeng ; 120(7): 2013-2026, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148472

RESUMO

The transition in the field of bone tissue engineering from bone regeneration to in vitro models has come with the challenge of recreating a dense and anisotropic bone-like extracellular matrix (ECM). Although the mechanism by which bone ECM gains its structure is not fully understood, mechanical loading and curvature have been identified as potential contributors. Here, guided by computational simulations, we evaluated cell and bone-like tissue growth and organization in a concave channel with and without directional fluid flow stimulation. Human mesenchymal stromal cells were seeded on donut-shaped silk fibroin scaffolds and osteogenically stimulated for 42 days statically or in a flow perfusion bioreactor. After 14, 28, and 42 days, constructs were investigated for cell and tissue growth and organization. As a result, directional fluid flow was able to improve organic tissue growth but not organization. Cells tended to orient in the tangential direction of the channel, possibly attributed to its curvature. Based on our results, we suggest that organic ECM production but not anisotropy can be stimulated through the application of fluid flow. With this study, an initial attempt in three-dimensions was made to improve the resemblance of in vitro produced bone-like ECM to the physiological bone ECM.


Assuntos
Osso e Ossos , Células-Tronco Mesenquimais , Humanos , Engenharia Tecidual/métodos , Osteogênese , Regeneração Óssea , Alicerces Teciduais , Células Cultivadas , Diferenciação Celular
2.
Clin Orthop Relat Res ; 481(1): 97-104, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833810

RESUMO

BACKGROUND: Conventional radiographs and clinical reassessment are considered guides in managing clinically suspected scaphoid fractures. This is a unique study as it assessed the value of conventional radiographs and clinical reassessment in a cohort of patients, all of whom underwent additional imaging, regardless of the outcome of conventional radiographs and clinical reassessment. QUESTIONS/PURPOSES: (1) What is the diagnostic performance of conventional radiographs in patients with a clinically suspected scaphoid fracture compared with high-resolution peripheral quantitative CT (HR-pQCT)? (2) What is the diagnostic performance of clinical reassessment in patients with a clinically suspected scaphoid fracture compared with HR-pQCT? (3) What is the diagnostic performance of conventional radiographs and clinical reassessment combined compared with HR-pQCT? METHODS: Between December 2017 and October 2018, 162 patients with a clinically suspected scaphoid fracture presented to the emergency department (ED). Forty-six patients were excluded and another 25 were not willing or able to participate, which resulted in 91 included patients. All patients underwent conventional radiography in the ED and clinical reassessment 7 to 14 days later, together with CT and HR-pQCT. The diagnostic performance characteristics and accuracy of conventional radiographs and clinical reassessment were compared with those of HR-pQCT for the diagnosis of fractures since this was proven to be superior to CT scaphoid fracture detection. The cohort included 45 men and 46 women with a median (IQR) age of 52 years (29 to 67). Twenty-four patients with a median age of 44 years (35 to 65) were diagnosed with a scaphoid fracture on HR-pQCT. RESULTS: When compared with HR-pQCT, conventional radiographs alone had a sensitivity of 67% (95% CI 45% to 84%), specificity of 85% (95% CI 74% to 93%), positive predictive value (PPV) of 62% (95% CI 46% to 75%), negative predictive value (NPV) of 88% (95% CI 80% to 93%), and a positive and negative likelihood ratio (LR) of 4.5 (95% CI 2.4 to 8.5) and 0.4 (95% CI 0.2 to 0.7), respectively. Compared with HR-pQCT, clinical reassessment alone resulted in a sensitivity of 58% (95% CI 37% to 78%), specificity of 42% (95% CI 30% to 54%), PPV of 26% (95% CI 19% to 35%), NPV of 74% (95% CI 62% to 83%), as well as a positive and negative LR of 1.0 (95% CI 0.7 to 1.5) and 1.0 (95% CI 0.6 to 1.7), respectively. Combining clinical examination with conventional radiography produced a sensitivity of 50% (95% CI 29% to 71%), specificity of 91% (95% CI 82% to 97%), PPV of 67% (95% CI 46% to 83%), NPV of 84% (95% CI 77% to 88%), as well as a positive and negative LR of 5.6 (95% CI 2.4 to 13.2) and 0.6 (95% CI 0.4 to 0.8), respectively. CONCLUSION: The accuracy of conventional radiographs (80% compared with HR-pQCT) and clinical reassessment (46% compared with HR-pQCT) indicate that the value of clinical reassessment is limited in diagnosing scaphoid fractures and cannot be considered directive in managing scaphoid fractures. The combination of conventional radiographs and clinical reassessment does not increase the accuracy of these diagnostic tests compared with the accuracy of conventional radiographs alone and is therefore also limited in diagnosing scaphoid fractures. LEVEL OF EVIDENCE: Level II, diagnostic study.


Assuntos
Fraturas Ósseas , Traumatismos da Mão , Osso Escafoide , Traumatismos do Punho , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Fraturas Ósseas/diagnóstico por imagem , Osso Escafoide/lesões , Traumatismos do Punho/diagnóstico por imagem , Radiografia
3.
Nephrol Dial Transplant ; 37(4): 652-662, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34718756

RESUMO

BACKGROUND: Hyperphosphataemia is strongly associated with cardiovascular disease and mortality. Recently, phosphate binders (PBs), which are used to bind intestinal phosphate, have been shown to bind vitamin K, thereby potentially aggravating vitamin K deficiency. This vitamin K binding by PBs may offset the beneficial effects of phosphate reduction in reducing vascular calcification (VC). Here we assessed whether combining PBs with vitamin K2 supplementation inhibits VC. METHODS: We performed 3/4 nephrectomy in rats, after which warfarin was given for 3 weeks to induce vitamin K deficiency. Next, animals were fed a high phosphate diet in the presence of low or high vitamin K2 and were randomized to either control or one of four different PBs for 8 weeks. The primary outcome was the amount of thoracic and abdominal aorta VC measured by high-resolution micro-computed tomography (µCT). Vitamin K status was measured by plasma MK7 levels and immunohistochemically analysed in vasculature using uncarboxylated matrix Gla protein (ucMGP) specific antibodies. RESULTS: The combination of a high vitamin K2 diet and PB treatment significantly reduced VC as measured by µCT for both the thoracic (P = 0.026) and abdominal aorta (P = 0.023), compared with MK7 or PB treatment alone. UcMGP stain was significantly more present in the low vitamin K2-treated groups in both the thoracic (P < 0.01) and abdominal aorta (P < 0.01) as compared with high vitamin K2-treated groups. Moreover, a high vitamin K diet and PBs led to reduced vascular oxidative stress. CONCLUSION: In an animal model of kidney failure with vitamin K deficiency, neither PB therapy nor vitamin K2 supplementation alone prevented VC. However, the combination of high vitamin K2 with PB treatment significantly attenuated VC.


Assuntos
Insuficiência Renal , Calcificação Vascular , Deficiência de Vitamina K , Animais , Feminino , Masculino , Ratos , Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Modelos Animais , Fosfatos , Diálise Renal , Insuficiência Renal/complicações , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle , Vitamina K , Vitamina K 1/uso terapêutico , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/tratamento farmacológico , Microtomografia por Raio-X
4.
BMC Musculoskelet Disord ; 23(1): 463, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581630

RESUMO

INTRODUCTION: Malalignment of the Total Ankle Replacement (TAR) has often been postulated as the main reason for the high incidence of TAR failure. As the ankle joint has a small contact area, stresses are typically high, and malalignment may lead to non-homogeneous stress distributions, including stress peaks that may initiate failure. This study aims to elucidate the effect of TAR malalignment on the contact stresses on the bone-implant interface, thereby gaining more understanding of the potential role of malalignment in TAR failure. METHODS: Finite Element (FE) models of the neutrally aligned as well as malaligned CCI (Ceramic Coated Implant) Evolution TAR implant (Van Straten Medical) were developed. The CCI components were virtually inserted in a generic three-dimensional (3D) reconstruction of the tibia and talus. The tibial and talar TAR components were placed in neutral alignment and in 5° and 10° varus, valgus, anterior and posterior malalignment. Loading conditions of the terminal stance phase of the gait cycle were applied. Peak contact pressure and shear stress at the bone-implant interface were simulated and stress distributions on the bone-implant interface were visualized. RESULTS: In the neutral position, a peak contact pressure and shear stress of respectively 98.4 MPa and 31.9 MPa were found on the tibial bone-implant interface. For the talar bone-implant interface, this was respectively 68.2 MPa and 39.0 MPa. TAR malalignment increases peak contact pressure and shear stress on the bone-implant interface. The highest peak contact pressure of 177 MPa was found for the 10° valgus malaligned tibial component, and the highest shear stress of 98.5 MPa was found for the 10° posterior malaligned talar model. High contact stresses were mainly located at the edges of the bone-implant interface and the fixation pegs of the talar component. CONCLUSIONS: The current study demonstrates that TAR malalignment leads to increased peak stresses. High peak stresses could contribute to bone damage and subsequently reduced implant fixation, micromotion, and loosening. Further research is needed to investigate the relationship between increased contact stresses at the bone-implant interface and TAR failure.


Assuntos
Artroplastia de Substituição do Tornozelo , Articulação do Tornozelo/cirurgia , Artroplastia de Substituição do Tornozelo/efeitos adversos , Artroplastia de Substituição do Tornozelo/métodos , Fenômenos Biomecânicos , Interface Osso-Implante , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Tíbia/cirurgia
5.
J Mater Sci Mater Med ; 30(8): 94, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414232

RESUMO

Clinically, S53P4 bioactive glass (BAG) has shown very promising results in bone infection treatment, but it is also known to degrade very slowly in vivo. To evaluate which mechanisms (cellular or dissolution) can play a role in the degradation of S53P4 BAG and S53P4 BAG putty, in vitro degradation experiments at different pH (7.4 and 4.6) were performed. Micro computed tomography showed a rapid dissolution of the synthetic binder in the putty formulation, within 12 h is simulated body fluid (pH = 7.4), leaving behind only loose granules. Therefore the degradation of the loose granules was investigated further. Significant weight loss was observed and ion chromatography showed that Ca2+, Na+ and PO43- ions were released from S54P4 BAG granules in the two fluids. It was observed that the weight loss and ion release were increased when the pH of the fluid was decreased to 4.6. Osteoclasts are known to create such a low pH when resorbing bone and therefore their capacity to degrade S53P4 surfaces were studied as well. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed that osteoclasts were able to create resorption pits in the calcium phosphate layer on S53P4 BAG surfaces. The silica of the BAG, located underneath the calcium phosphate, seemed to hinder further osteclastic resorption of the material. To our knowledge we were the first to observe actively resorbing osteoclasts on S53P4 bioactive glass surfaces, in vitro. Future research is needed to define the specific role osteoclasts play in the degradation of BAG in vivo.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/farmacocinética , Fosfatos de Cálcio/farmacocinética , Vidro , Osteoclastos/fisiologia , Adsorção , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Diferenciação Celular , Células Cultivadas , Vidro/química , Humanos , Teste de Materiais , Monócitos/fisiologia
6.
Calcif Tissue Int ; 103(3): 252-265, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29594493

RESUMO

Most HR-pQCT studies examining cortical bone use an automatically generated endocortical contour (AUTO), which is manually corrected if it visually deviates from the apparent endocortical margin (semi-automatic method, S-AUTO). This technique may be prone to operator-related variability and is time consuming. We examined whether the AUTO instead of the S-AUTO method can be used for cortical bone analysis. Fifty scans of the distal radius and tibia from participants of The Maastricht Study were evaluated with AUTO, and subsequently with S-AUTO by three independent operators. AUTO cortical bone parameters were compared to the average parameters obtained by the three operators (S-AUTOmean). All differences in mean cortical bone parameters between AUTO and S-AUTOmean were < 5%, except for lower AUTO cortical porosity of the radius (- 16%) and tibia (- 6%), and cortical pore volume (Ct.Po.V) of the radius (- 7%). The ICC of S-AUTOmean and AUTO was > 0.90 for all parameters, except for cortical pore diameter of the radius (0.79) and tibia (0.74) and Ct.Po.V of the tibia (0.89), without systematic errors on the Bland-Altman plots. The precision errors (RMS-CV%) of the radius parameters between S-AUTOmean and AUTO were comparable to those between the individual operators, whereas the tibia RMS-CV% between S-AUTOmean and AUTO were higher than those of the individual operators. Comparison of the three operators revealed clear inter-operator variability. This study suggests that the AUTO method can be used for cortical bone analysis in a cross-sectional study, but that the absolute values-particularly of the porosity-related parameters-will be lower.


Assuntos
Osso Cortical/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
BMC Med Imaging ; 17(1): 18, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241752

RESUMO

BACKGROUND: Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. METHODS: Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. RESULTS: No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. CONCLUSIONS: We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.


Assuntos
Placas Ósseas/classificação , Fixação Interna de Fraturas/instrumentação , Fraturas Ósseas/cirurgia , Rádio (Anatomia)/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Benzofenonas , Densidade Óssea , Feminino , Consolidação da Fratura , Humanos , Cetonas , Masculino , Projetos Piloto , Polietilenoglicóis , Polímeros , Rádio (Anatomia)/cirurgia , Titânio
8.
J Arthroplasty ; 31(12): 2773-2777, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27394075

RESUMO

BACKGROUND: Historically it has been suggested that noise-induced hearing loss (NIHL) affects approximately 50% of the orthopedic surgery personnel. This noise may be partially caused by the use of powered saw systems that are used to make the bone cuts. The first goal was to quantify and compare the noise emission of these different saw systems during total knee arthroplasty (TKA) surgery. A second goal was to estimate the occupational NIHL risk for the orthopedic surgery personnel in TKA surgery by quantifying the total daily noise emission spectrum during TKA surgery and to compare this to the Dutch Occupational Health Organization guidelines. METHODS: A conventional sagittal oscillating blade system with a full oscillating blade and 2 newer oscillating tip saw systems (handpiece and blade) were compared. Noise level measurements during TKA surgery were performed during cutting and hammering, additionally surgery noise profiles were made. RESULTS: The noise level was significantly lower for the oscillating tip saw systems compared to the conventional saw system, but all were in a range that can cause NIHL. The conventional system handpiece produced a considerable higher noise level compared to oscillating tip handpiece. CONCLUSION: NIHL is an underestimated problem in the orthopedic surgery. Solutions for decreasing the risk of hearing loss should be considered. The use of oscillating tip saw systems have a reduced noise emission in comparison with the conventional saw system. The use of these newer systems might be a first step in decreasing hearing loss among the orthopedic surgery personnel.


Assuntos
Artroplastia do Joelho/instrumentação , Osso e Ossos/cirurgia , Ruído , Exposição Ocupacional/análise , Ortopedia/estatística & dados numéricos , Perda Auditiva Provocada por Ruído/etiologia , Humanos , Ruído/efeitos adversos , Exposição Ocupacional/efeitos adversos , Instrumentos Cirúrgicos
9.
J Anat ; 226(3): 236-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655770

RESUMO

Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations.


Assuntos
Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Animais , Peso Corporal/fisiologia , Análise de Elementos Finitos , Modelos Biológicos , Osteócitos/citologia , Osteogênese/fisiologia , Estresse Mecânico
10.
Eur Spine J ; 24(5): 1031-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421549

RESUMO

PURPOSE: To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model. METHODS: A double-level fusion study was performed in 36 goats. Four cage filler groups were defined: (i) acellular PLCL, (ii) PLCL + SVF (freshly harvested stromal vascular fraction highly enriched in ASCs); (iii) PLCL + ASCs (cultured to homogeneity); and (iv) autologous iliac crest bone graft (ABG). Fusion was assessed after 3 and 6 months by radiography, micro-CT, biomechanics, and biochemical analysis of tissue formed inside the cage after 6 months. RESULTS: No adverse effects were observed in all groups. After 3 months, similar and low fusion rates were found. Segmental stability did not differ between groups in all tested directions. Micro-CT imaging revealed significantly higher amounts of mineralized tissue in the ABG group compared to all others. After 6 months, interbody fusion rates were: PLCL 53%, SVF 30%, ASC 43% and ABG 63%. A trend towards higher mineralized tissue content was found for the ABG group. Biochemical and biomechanical analyses revealed equal maturity of collagen cross-links and similar segmental stability between all groups. CONCLUSIONS: This study demonstrates the technical feasibility and safety of the one-step surgical procedure for spinal fusion for the first time. The radiolucent PLCL scaffold allowed in vivo monitoring of bone formation using plain radiography. Addition of stem cells to the PLCL scaffolds did not result in adverse effects, but did not enhance the rate and number of interbody fusions under the current conditions. A trend towards superior results with ABG was found. Further research is warranted to optimize the spinal fusion model for proper evaluation of both PLCL and stem cell therapy.


Assuntos
Implantes Absorvíveis , Tecido Adiposo/citologia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Transplante de Células-Tronco , Engenharia Tecidual , Animais , Estudos de Viabilidade , Cabras , Ílio/transplante , Vértebras Lombares/cirurgia , Modelos Animais , Osseointegração , Poliésteres , Células Estromais/transplante
11.
J Biomech Eng ; 136(3): 031004, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337166

RESUMO

Simulation of bone remodeling at the bone cell level can predict changes in bone microarchitecture and density due to bone diseases and drug treatment. Their clinical application, however, is limited since bone microarchitecture can only be measured in the peripheral skeleton of patients and since the simulations are very time consuming. To overcome these issues, we have developed an analytical model to predict bone density adaptation at the organ level, in agreement with our earlier developed bone remodeling theory at the cellular level. Assuming a generalized geometrical model at the microlevel, the original theory was reformulated into an analytical equation that describes the evolution of bone density as a function of parameters that describe cell activity, mechanotransduction and mechanical loading. It was found that this analytical model can predict changes in bone density due to changes in these cell-level parameters that are in good agreement with those predicted by the earlier numerical model that implemented a detailed micro-finite element (FE) model to represent the bone architecture and loading, at only a fraction of the computational costs. The good agreement between analytical and numerical density evolutions indicates that the analytical model presented in this study can predict well bone functional adaptation and, eventually, provide an efficient tool for simulating patient-specific bone remodeling and for better prognosis of bone fracture risk.


Assuntos
Densidade Óssea/fisiologia , Remodelação Óssea/fisiologia , Osso e Ossos/fisiologia , Mecanotransdução Celular/fisiologia , Osteoblastos/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Modelos Biológicos , Tamanho do Órgão/fisiologia , Estresse Mecânico , Suporte de Carga/fisiologia
12.
Bone ; 187: 117179, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960298

RESUMO

X-linked Hypophosphatemia (XLH) is the most common type of inherited rickets. Although the clinical features are well characterized, bone structure, mineralization, and biomechanical properties are poorly known. Our aim was to analyze bone properties in the appendicular and axial skeleton of adults with XLH. In this observational case-control study, each affected patient (N = 14; 9 females; age 50 ± 15 years) was matched by sex, age and body mass index to a minimum of two healthy controls (N = 34). Dual-energy X-ray Absorptiometry (DXA) analyses revealed that areal bone mineral density (aBMD) was higher in XLH patients at the lumbar spine (Z score mean difference = +2.47 SD, P value = 1.4 × 10-3). Trabecular Bone Score was also higher at the lumbar spine (P value = 1.0 × 10-4). High Resolution peripheral Quantitative Computed Tomography (HRpQCT) demonstrated that bone cross-sectional area was larger at the distal radius (P value = 6 × 10-3). Total and trabecular volumetric BMD were lower at both sites. Trabecular bone volume fraction was also lower with fewer trabecular numbers at both sites. However, bone strength evaluated by micro-finite element analyzes revealed unaffected bone stiffness and maximum failure load. Evaluation of bone mineralization with aBMD by DXA at the distal radius correlated with vBMD by HRpQCT measurements at both sites. PTH levels were inversely correlated with trabecular vBMD and BV/TV at the tibia. We then followed a subset of nine patients (median follow-up of 4 years) and reassessed HRpQCT. At the tibia, we observed a greater decrease than expected from an age and sex standardized normal population in total and cortical vBMD as well as a trabecularization of the cortical compartment. In conclusion, in adult patients with XLH, bone mineral density is high at the axial skeleton but low at the appendicular skeleton. With time, microarchitectural alterations worsen. We propose that noninvasive evaluation methods of bone mineralization such as DXA including the radius should be part of the management of XLH patients. Larger studies are needed to evaluate the clinical significance of BMD changes in XLH patients under conventional or targeted therapies.

13.
Mater Today Bio ; 25: 100959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327976

RESUMO

Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This study aimed to improve the bone repair potential of this scaffold by incorporating newly developed strontium (Sr) ion enriched amorphous calcium phosphate (Sr-ACP) granules (100-150 µm). Sr concentration of Sr-ACP was determined with ICP-MS at 2.49 ± 0.04 wt%. Then 30 wt% ACP or Sr-ACP granules were integrated into the scaffold prototypes. The ACP or Sr-ACP granules were well embedded and distributed in the collagen matrix demonstrated by micro-CT and scanning electron microscopy/energy dispersive x-ray spectrometry. Good cytocompatibility of ACP/Sr-ACP granules and ACP/Sr-ACP enriched scaffolds was confirmed with in vitro cytotoxicity assays. An overall promising early tissue response and good biocompatibility of ACP and Sr-ACP enriched scaffolds were demonstrated in a subcutaneous mouse model. In a goat osteochondral defect model, significantly more bone was observed at 6 months with the treatment of Sr-ACP enriched scaffolds compared to scaffold-only, in particular in the weight-bearing femoral condyle subchondral bone defect. Overall, the incorporation of osteogenic Sr-ACP granules in Col/Col-Mg-HAp scaffolds showed to be a feasible and promising strategy to improve subchondral bone repair.

14.
Cartilage ; : 19476035241233659, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501739

RESUMO

OBJECTIVE: Osteoarthritis (OA) is characterized by articular cartilage erosion, pathological subchondral bone changes, and signs of synovial inflammation and pain. We previously identified p[63-82], a bone morphogenetic protein 7 (BMP7)-derived bioactive peptide that attenuates structural cartilage degeneration in the rat medial meniscal tear-model for posttraumatic OA. This study aimed to evaluate the cartilage erosion-attenuating activity of p[63-82] in a different preclinical model for OA (anterior cruciate ligament transection-partial medial meniscectomy [anterior cruciate ligament transection (ACLT)-pMMx]). The disease-modifying action of the p[63-82] was followed-up in this model for 5 and 10 weeks. DESIGN: Skeletally mature male Lewis rats underwent ACLT-pMMx surgery. Rats received weekly intra-articular injections with either saline or 500 ng p[63-82]. Five and 10 weeks postsurgery, rats were sacrificed, and subchondral bone characteristics were determined using microcomputed tomography (µCT). Histopathological evaluation of cartilage degradation and Osteoarthritis Research Society International (OARSI)-scoring was performed following Safranin-O/Fast Green staining. Pain-related behavior was measured by incapacitance testing and footprint analysis. RESULTS: Histopathological evaluation at 5 and 10 weeks postsurgery showed reduced cartilage degeneration and a significantly reduced OARSI score, whereas no significant changes in subchondral bone characteristics were found in the p[63-82]-treated rats compared to the saline-treated rats. ACLT-pMMx-induced imbalance of static weightbearing capacity in the p[63-82] group was significantly improved compared to the saline-treated rats at weeks 5 postsurgery. Footprint analysis scores in the p[63-82]-treated rats demonstrated improvement at week 10 postsurgery. CONCLUSIONS: Weekly intra-articular injections of p[63-82] in the rat ACLT-pMMx posttraumatic OA model resulted in reduced degenerative cartilage changes and induced functional improvement in static weightbearing capacity during follow-up.

15.
Eur Spine J ; 22(10): 2264-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771503

RESUMO

PURPOSE: A possible complication after total disc replacement (TDR) is subsidence, presumably caused by asymmetric implantation, implant undersizing or reduced bone quality. This study aims to quantify the degree of subsidence of an SB Charité TDR, and investigate whether undersizing is related to subsidence. METHODS: A custom developed software package (Mathworks) reconstructed 3D bone-implant geometry. A threshold for subsidence was determined by comparing penetrated bone volume (PBV) and rotation angles. Inter- and intra-observer reproducibilities were calculated. Subsidence was correlated to undersizing. RESULTS: High inter- and intra-observer correlation coefficients were found for the method (R > 0.92). Subsidence was quantified as PBV 700 mm(3) combined with a rotation angle >7.5°. A reduced risk of subsidence was correlated to >60 and >62 % of the bony endplate covered by the TDR endplate for L4 and L5, respectively. CONCLUSIONS: A reproducible method to determine undersizing was developed. Thresholds were determined related to a reduced risk of subsidence.


Assuntos
Degeneração do Disco Intervertebral/cirurgia , Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Falha de Prótese/efeitos adversos , Ajuste de Prótese/métodos , Substituição Total de Disco/métodos , Adulto , Artrografia/métodos , Artrografia/normas , Artrografia/estatística & dados numéricos , Feminino , Humanos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Dor Lombar/diagnóstico por imagem , Dor Lombar/patologia , Dor Lombar/cirurgia , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Variações Dependentes do Observador , Tamanho do Órgão , Ajuste de Prótese/normas , Ajuste de Prótese/estatística & dados numéricos , Curva ROC , Estudos Retrospectivos , Rotação , Substituição Total de Disco/efeitos adversos
16.
Bone ; 177: 116912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739299

RESUMO

Implant migration has been described as a minor displacement of orthodontic mini-implants (OMIs) when subjected to constant forces. Aim of this study was to evaluate the impact of local stresses on implant migration and bone remodelling around constantly loaded OMIs. Two mini-implants were placed in one caudal vertebra of 61 rats, connected by a nickel­titanium contraction spring, and loaded with different forces (0.0, 0.5, 1.0, 1.5 N). In vivo micro-CT scans were taken immediately and 1, 2 (n = 61), 4, 6 and 8 (n = 31) weeks post-op. Nine volumes of interest (VOIs) around each implant were defined. To analyse stress values, micro-finite element models were created. Bone remodelling was analysed by calculating the bone volume change between scans performed at consecutive time points. Statistical analysis was performed using a linear mixed model and likelihood-ratio-tests, followed by Tuckey post hoc tests when indicated. The highest stresses were observed in the proximal top VOI. In all VOIs, stress values tended to reach their maximum after two weeks and decreased thereafter. Bone remodelling analysis revealed initial bone loss within the first two weeks and bone gain up to week eight, which was noted especially in the highest loading group. The magnitude of local stresses influenced bone remodelling and it can be speculated that the stress related bone resorption favoured implant migration. After a first healing phase with a high degree of bone resorption, net bone gain representing consolidation was observed.

17.
J Foot Ankle Res ; 16(1): 40, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37353843

RESUMO

BACKGROUND: Malalignment is often postulated as an important reason for the high failure rate of total ankle replacements (TARs). The correlation between TAR malalignment and clinical outcome, however, is not fully understood. Improving and expanding radiographic TAR alignment measurements in the clinic might lead to a better insight into the correlation between malalignment and the clinical outcome. This study aims to develop and validate a tool to semi-automatic measure TAR alignment, and to improve alignment measurements on radiographs in the clinic. METHODS: A tool to semi-automatically measure TAR alignment on anteroposterior and lateral radiographs was developed in MATLAB. Using the principle of edge contouring and the perpendicular relationship between the anteroposterior and lateral radiographs, the exact configuration of the TAR components can be found. Two observers validated the tool by measuring TAR alignment of ten patients using the tool. The Intraclass Coefficient (ICC) was calculated to assess the reliability of the developed method. The results obtained by the tool were compared to clinical results during radiographic follow-up in the past, and the accuracy of both methods was calculated using three-dimensional CT data. RESULTS: The tool showed an accuracy of 76% compared to 71% for the method used during follow-up. ICC values were 0.94 (p < 0.01) and higher for both inter-and intra-observer reliability. CONCLUSIONS: The tool presents a reproducible method to measure TAR alignment parameters. Three-dimensional alignment parameters are obtained from two-dimensional radiographs, and as the tool can be applied to most TAR designs, it offers a valuable addition in the clinic and for research purposes.


Assuntos
Articulação do Tornozelo , Artroplastia de Substituição do Tornozelo , Humanos , Articulação do Tornozelo/diagnóstico por imagem , Reprodutibilidade dos Testes , Artroplastia de Substituição do Tornozelo/métodos , Radiografia
18.
Bioengineering (Basel) ; 10(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892915

RESUMO

(1) Background: Complex proximal humerus fractures often result in complications following surgical treatment. A better understanding of the full 3D displacement would provide insight into the fracture morphology. Repositioning of fracture elements is often conducted by using the contralateral side as a reconstruction template. However, this requires healthy contralateral anatomy. The purpose of this study was to create a Statistical Shape Model (SSM) and compare its effectiveness to the contralateral registration method for the prediction of the humeral proximal segment; (2) Methods: An SSM was created from 137 healthy humeri. A prediction for the proximal segment of the left humeri from eight healthy patients was made by combining the SSM with parameters. The predicted proximal segment was compared to the left proximal segment of the patients. Their left humerus was also compared to the contralateral (right) humerus; (3) Results: Eight modes explained 95% of the variation. Most deviations of the SSM prediction and the contralateral registration method were below the clinically relevant 2 mm distance threshold.; (4) Conclusions: An SSM combined with parameters is a suitable method to predict the proximal humeral segment when the contralateral CT scan is unavailable or the contralateral humerus is unhealthy, provided that the fracture pattern allows measurements of these parameters.

19.
Clin Biomech (Bristol, Avon) ; 108: 106071, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37597385

RESUMO

BACKGROUND: Proximal junctional failure is a common complication attributed to the rigidity of long pedicle screw fixation constructs used for surgical correction of adult spinal deformity. Semi-rigid junctional fixation achieves a gradual transition in range of motion at the ends of spinal instrumentation, which could lead to reduced junctional stresses, and ultimately reduce the incidence of proximal junctional failure. This study investigates the biomechanical effect of different semi-rigid junctional fixation techniques in a T8-L3 finite element spine segment model. METHODS: First, degeneration of the intervertebral disc was successfully implemented by altering the height. Second, transverse process hooks, one- and two-level clamped tapes, and one- and two-level knotted tapes instrumented proximally to three-level pedicle screw fixation were validated against ex vivo range of motion data of a previous study. Finally, the posterior ligament complex forces and nucleus pulposus stresses were quantified. FINDINGS: Simulated range of motions demonstrated the fidelity of the general model and modelling of semi-rigid junctional fixation techniques. All semi-rigid junctional fixation techniques reduced the posterior ligament complex forces at the junctional zone compared to pedicle screw fixation. Transverse process hooks and knotted tapes reduced nucleus pulposus stresses, whereas clamped tapes increased nucleus pulposus stresses at the junctional zone. INTERPRETATION: The relationship between the range of motion transition and the reductions in posterior ligament complex and nucleus pulposus stresses was complex and dependent on the fixation techniques. Clinical trials are required to compare the effectiveness of semi-rigid junctional fixation techniques in terms of reducing proximal junctional failure incidence rates.


Assuntos
Parafusos Pediculares , Procedimentos de Cirurgia Plástica , Adulto , Humanos , Análise de Elementos Finitos , Movimento (Física) , Amplitude de Movimento Articular
20.
Front Bioeng Biotechnol ; 11: 1244954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691908

RESUMO

Anterior cruciate ligament (ACL) rupture is a very common knee joint injury. Torn ACLs are currently reconstructed using tendon autografts. However, half of the patients develop osteoarthritis (OA) within 10 to 14 years postoperatively. Proposedly, this is caused by altered knee kine(ma)tics originating from changes in graft mechanical properties during the in vivo remodeling response. Therefore, the main aim was to use subject-specific finite element knee models and investigate the influence of decreasing graft stiffness and/or increasing graft laxity on knee kine(ma)tics and cartilage loading. In this research, 4 subject-specific knee geometries were used, and the material properties of the ACL were altered to either match currently used grafts or mimic in vivo graft remodeling, i.e., decreasing graft stiffness and/or increasing graft laxity. The results confirm that the in vivo graft remodeling process increases the knee range of motion, up to >300 percent, and relocates the cartilage contact pressures, up to 4.3 mm. The effect of remodeling-induced graft mechanical properties on knee stability exceeded that of graft mechanical properties at the time of surgery. This indicates that altered mechanical properties of ACL grafts, caused by in vivo remodeling, can initiate the early onset of osteoarthritis, as observed in many patients clinically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA