Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109489

RESUMO

Leaf scald is a destructive sugarcane disease caused by the bacterium Xanthomonas albilineans (Ashby) Dowson. This pathogen presents the gene cluster SPI-1 T3SS, a conserved feature in pathogens vectored by animals. In this study, the competence of Mahanarva fimbriolata (Stål), a spittlebug commonly found in sugarcane fields in Brazil, was evaluated for the transmission of X. albilineans. Artificial probing assays were conducted to investigate the ability of M. fimbriolata adults to acquire X. albilineans from artificial diets containing the pathogen with subsequent inoculation of X. albilineans into pathogen-free diets. Plant probing assays with M. fimbriolata adults were conducted to evaluate the acquisition of X. albilineans from diseased source plants and subsequent inoculation of healthy recipient sugarcane plants. The presence of X. albilineans DNA in saliva/diet mixtures of the artificial probing assays and both insects and plants of the plant probing assays were checked using TaqMan assays. The artificial probing assays showed that M. fimbriolata adults were able to acquire and inoculate X. albilineans in diets. Plant probing assays confirmed the competence of M. fimbriolata to transmit X. albilineans to sugarcane. Over the entire experiment, 42% of the insects had acquired the pathogen and successful inoculation of the pathogen occurred in 18% of the recipient-susceptible sugarcane plants at 72 or 96 h of inoculation access period. Assays evidenced the vector competence of M. fimbriolata for transmission of X. albilineans, opening new pathways for investigating the biology and the economic impacts of the interaction between X. albilineans and M. fimbriolata.


Assuntos
Hemípteros , Saccharum , Xanthomonas , Animais , Saccharum/microbiologia , Xanthomonas/genética , Brasil , Folhas de Planta , Insetos Vetores
2.
BMC Microbiol ; 22(1): 193, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941528

RESUMO

BACKGROUND: Plant microbiome and its manipulation inaugurate a new era for plant biotechnology with the potential to benefit sustainable crop production. Here, we used the large-scale 16S rDNA sequencing analysis to unravel the dynamic, structure, and composition of exophytic and endophytic microbial communities in two hybrid commercial cultivars of sugarcane (R570 and SP80-3280), two cultivated genotypes (Saccharum officinarum and Saccharum barberi) and one wild species (Saccharum spontaneum). RESULTS: Our analysis identified 1372 amplicon sequence variants (ASVs). The microbial communities' profiles are grouped by two, root and bulk soils and stem and leave when these four components are compared. However, PCoA-based data supports that endophytes and epiphytes communities form distinct groups, revealing an active host-derived mechanism to select the resident microbiota. A strong genotype-influence on the assembly of microbial communities in Saccharum ssp. is documented. A total of 220 ASVs persisted across plant cultivars and species. The ubiquitous bacteria are two potential beneficial bacteria, Acinetobacter ssp., and Serratia symbiotica. CONCLUSIONS: The results presented support the existence of common and cultivar-specific ASVs in two commercial hybrids, two cultivated canes and one species of Saccharum across tissues (leaves, stems, and roots). Also, evidence is provided that under the experimental conditions described here, each genotype bears its microbial community with little impact from the soil conditions, except in the root system. It remains to be demonstrated which aspect, genotype, environment or both, has the most significant impact on the microbial selection in sugarcane fields.


Assuntos
Microbiota , Saccharum , Bactérias/genética , Genótipo , Microbiota/genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Solo , Microbiologia do Solo
3.
BMC Plant Biol ; 21(1): 23, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413115

RESUMO

BACKGROUND: Sugarcane is capable to store large amounts of sucrose in the culm at maturity hence it became a major source of sucrose for the food and the renewable energy industries. Sucrose, the main disaccharide produced by photosynthesis, is mainly stored in the vacuole of the cells of non-photosynthetic tissues. Two pathways are known to release free sucrose in plant cells, one is de novo synthesis dependent on sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (S6PP) while the other is regulatory and dependent on sucrose synthase (SuSy) activity. The molecular understanding of genes that give rise to the expression of the enzyme sucrose phosphate phosphatase, responsible for the release of sucrose in the last synthetic step lag behind the regulatory SuSy gene. RESULTS: Sugarcane genome sequencing effort disclosed the existence of a tandem duplication and the present work further support that both S6PP.1 and S6PP_2D isoforms are actively transcribed in young sugarcane plants but significantly less at maturity. Two commercial hybrids (SP80-3280 and R570) and both Saccharum spontaneum (IN84-58) and S.officinarum (BADILLA) exhibit transcriptional activity at three-month-old plants of the tandem S6PP_2D in leaves, culm, meristem and root system with a cultivar-specific distribution. Moreover, this tandem duplication is shared with other grasses and is ancestral in the group. CONCLUSION: Detection of a new isoform of S6PP resulting from the translation of 14 exon-containing transcript (S6PP_2D) will contribute to the knowledge of sucrose metabolism in plants. In addition, expression varies along plant development and between sugarcane cultivars and parental species.


Assuntos
Genes Duplicados , Genoma de Planta , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Saccharum/enzimologia , Saccharum/genética , Sacarose/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Filogenia
4.
Proc Natl Acad Sci U S A ; 115(17): 4325-4333, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29686065

RESUMO

Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Planeta Terra
5.
BMC Genomics ; 20(1): 809, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694536

RESUMO

BACKGROUND: Resistance genes composing the two-layer immune system of plants are thought as important markers for breeding pathogen-resistant crops. Many have been the attempts to establish relationships between the genomic content of Resistance Gene Analogs (RGAs) of modern sugarcane cultivars to its degrees of resistance to diseases such as smut. However, due to the highly polyploid and heterozygous nature of sugarcane genome, large scale RGA predictions is challenging. RESULTS: We predicted, searched for orthologs, and investigated the genomic features of RGAs within a recently released sugarcane elite cultivar genome, alongside the genomes of sorghum, one sugarcane ancestor (Saccharum spontaneum), and a collection of de novo transcripts generated for six modern cultivars. In addition, transcriptomes from two sugarcane genotypes were obtained to investigate the roles of RGAs differentially expressed (RGADE) in their distinct degrees of resistance to smut. Sugarcane references lack RGAs from the TNL class (Toll-Interleukin receptor (TIR) domain associated to nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains) and harbor elevated content of membrane-associated RGAs. Up to 39% of RGAs were organized in clusters, and 40% of those clusters shared synteny. Basically, 79% of predicted NBS-encoding genes are located in a few chromosomes. S. spontaneum chromosome 5 harbors most RGADE orthologs responsive to smut in modern sugarcane. Resistant sugarcane had an increased number of RGAs differentially expressed from both classes of RLK (receptor-like kinase) and RLP (receptor-like protein) as compared to the smut-susceptible. Tandem duplications have largely contributed to the expansion of both RGA clusters and the predicted clades of RGADEs. CONCLUSIONS: Most of smut-responsive RGAs in modern sugarcane were potentially originated in chromosome 5 of the ancestral S. spontaneum genotype. Smut resistant and susceptible genotypes of sugarcane have a distinct pattern of RGADE. TM-LRR (transmembrane domains followed by LRR) family was the most responsive to the early moment of pathogen infection in the resistant genotype, suggesting the relevance of an innate immune system. This work can help to outline strategies for further understanding of allele and paralog expression of RGAs in sugarcane, and the results should help to develop a more applied procedure for the selection of resistant plants in sugarcane.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Genômica , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Saccharum/genética , Saccharum/imunologia , Bases de Dados Genéticas , Evolução Molecular , Genótipo , Família Multigênica/genética , Filogenia , Saccharum/microbiologia , Homologia de Sequência do Ácido Nucleico
6.
J Exp Bot ; 70(2): 497-506, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30605523

RESUMO

The development of lysigenous aerenchyma starts with cell expansion and degradation of pectin from the middle lamella, leading to cell wall modification, and culminating with cell separation. Here we report that nutritional starvation of sugarcane induced gene expression along sections of the first 5 cm of the root and between treatments. We selected two candidate genes: a RAV transcription factor, from the ethylene response factors superfamily, and an endopolygalacturonase (EPG), a glycosyl hydrolase related to homogalacturonan hydrolysis from the middle lamella. epg1 and rav1 transcriptional patterns suggest they are essential genes at the initial steps of pectin degradation during aerenchyma development in sugarcane. Due to the high complexity of the sugarcane genome, rav1 and epg1 were sequenced from 17 bacterial artificial chromosome clones containing hom(e)ologous genomic regions, and the sequences were compared with those of Sorghum bicolor. We used one hom(e)olog sequence from each gene for transactivation assays in tobacco. rav1 was shown to bind to the epg1 promoter, repressing ß-glucuronidase activity. RAV repression upon epg1 transcription is the first reported link between ethylene regulation and pectin hydrolysis during aerenchyma formation. Our findings may help to elucidate cell wall degradation in sugarcane and therefore contribute to second-generation bioethanol production.


Assuntos
Parede Celular/metabolismo , Poligalacturonase/metabolismo , Saccharum/enzimologia , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/crescimento & desenvolvimento
7.
Am J Bot ; 106(9): 1173-1189, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31483483

RESUMO

PREMISE: The inflorescence of Passiflora species originates from a bud complex that derives from an initially undivided meristem and ultimately produces flowers and tendrils. Because the development of the inflorescence structures derived from such meristems has been variously interpreted, we investigated the ontogeny of the bud complex and the expression of APETALA1 (AP1) in Passiflora species. METHODS: The anatomical development of 15 species of Passiflora was analyzed using light and scanning electron microscopy. We localized AP1 expression in tissues during inflorescence initiation in two Passiflora species using in situ hybridization. RESULTS: In most species, the first primordium to differentiate from the bud complex is a bract, which develops laterally to what will become the inflorescence first-order axis, in this case, the tendril. The bract axillary meristem originates the second-order inflorescence axis meristem, which produces two bracteoles, subsequently developing into a floral meristem. AP1 is uniformly expressed in the initially undivided meristem, with expression maintained in the organ primordia derived from the bud complex. Signal is particularly strong in tendril tips. CONCLUSIONS: We concluded that what is often understood as the first bract produced by a floral meristem actually is produced by the original axillary meristem. Bracteoles develop from the meristem in the bract axil; bracteoles plus floral meristem constitute the inflorescence second-order axis. Comparison of inflorescence early developmental stages in different subgenera indicates flowers are arranged in a modified cyme, with the tendril representing the inflorescence terminal portion. PasAP1 has a broad expression pattern and may have an important role during inflorescence development.


Assuntos
Passiflora , Anatomia Comparada , Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema
8.
Mol Biol Rep ; 46(6): 6117-6133, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549373

RESUMO

A significant proportion of plant genomes is consists of transposable elements (TEs), especially LTR retrotransposons (LTR-RTs) which are known to drive genome evolution. However, not much information is available on the structure and evolutionary role of TEs in the Passifloraceae family (Malpighiales order). Against this backdrop, we identified, characterized, and inferred the potential genomic impact of the TE repertoire found in the available genomic resources for Passiflora edulis, a tropical fruit species. A total of 250 different TE sequences were identified (96% Class I, and 4% Class II), corresponding to ~ 19% of the P. edulis draft genome. TEs were found preferentially in intergenic spaces (70.4%), but also overlapping genes (30.6%). LTR-RTs accounted for 181 single elements corresponding to ~ 13% of the draft genome. A phylogenetic inference of the reverse transcriptase domain of the LTR-RT revealed association of 37 elements with the Copia superfamily (Angela, Ale, Tork, and Sire) and 128 with the Gypsy (Del, Athila, Reina, CRM, and Galadriel) superfamily, and Del elements were the most frequent. Interestingly, according to insertion time analysis, the majority (95.9%) of the LTR-RTs were recently inserted into the P. edulis genome (< 2.0 Mya), and with the exception of the Athila lineage, all LTR-RTs are transcriptionally active. Moreover, functional analyses disclosed that the Angela, Del, CRM and Tork lineages are conserved in wild Passiflora species, supporting the idea of a common expansion of Copia and Gypsy superfamilies. Overall, this is the first study describing the P. edulis TE repertoire, and it also lends weight to the suggestion that LTR-RTs had a recent expansion into the analyzed gene-rich region of the P. edulis genome, possibly along WGD (Whole genome duplication) events, but are under negative selection due to their potential deleterious impact on gene regions.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Frutas/genética , Passiflora/genética , Retroelementos , Sequências Repetidas Terminais , Mutagênese Insercional , Passiflora/classificação , Filogenia , Transcrição Gênica
9.
New Phytol ; 214(3): 1260-1266, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28134995

RESUMO

Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA4 , an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice.


Assuntos
Giberelinas/biossíntese , Óperon/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/microbiologia , Xanthomonas/genética , Vias Biossintéticas/genética , Geografia , Giberelinas/química , Xanthomonas/isolamento & purificação
10.
Ann Bot ; 119(5): 681-687, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375427

RESUMO

Background: Plants are constantly exposed to evolving pathogens and pests, with crop losses representing a considerable threat to global food security. As pathogen evolution can overcome disease resistance that is conferred by individual plant resistance genes, an enhanced understanding of the plant immune system is necessary for the long-term development of effective disease management strategies. Current research is rapidly advancing our understanding of the plant innate immune system, with this multidisciplinary subject area reflected in the content of the 18 papers in this Special Issue. Scope: Advances in specific areas of plant innate immunity are highlighted in this issue, with focus on molecular interactions occurring between plant hosts and viruses, bacteria, phytoplasmas, oomycetes, fungi, nematodes and insect pests. We provide a focus on research across multiple areas related to pathogen sensing and plant immune response. Topics covered are categorized as follows: binding proteins in plant immunity; cytokinin phytohormones in plant growth and immunity; plant-virus interactions; plant-phytoplasma interactions; plant-fungus interactions; plant-nematode interactions; plant immunity in Citrus; plant peptides and volatiles; and assimilate dynamics in source/sink metabolism. Conclusions: Although knowledge of the plant immune system remains incomplete, the considerable ongoing scientific progress into pathogen sensing and plant immune response mechanisms suggests far reaching implications for the development of durable disease resistance against pathogens and pests.


Assuntos
Imunidade Vegetal/fisiologia , Citocininas/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/fisiologia , Imunidade Vegetal/genética
11.
Am J Bot ; 104(10): 1493-1509, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885220

RESUMO

PREMISE OF THE STUDY: Bignoniaceae is an important component of neotropical forests and a model for evolutionary and biogeographical studies. A previous combination of molecular markers and morphological traits improved the phylogeny of the group. Here we demonstrate the value of next-generation sequencing (NGS) to assemble the chloroplast genome of eight Anemopaegma species and solve taxonomic problems. METHODS: Three NGS platforms were used to sequence total DNA of Anemopaegma species. After genome assembly and annotation, we compared chloroplast genomes within Anemopaegma, with other Lamiales species, and the evolutionary rates of protein-coding genes using Tanaecium tetragonolobum as the outgroup. Phylogenetic analyses of Anemopaegma with different data sets were performed. KEY RESULTS: Chloroplast genomes of Anemopaegma species ranged from 167,413 bp in A. foetidum to 168,987 bp in A. acutifolium ("typical" form). They exhibited a characteristic quadripartite structure with a large single-copy region (75,070-75,761 bp), a small single-copy region (12,766-12,817 bp) and a pair of inverted repeat regions (IRs) (39,480-40,481) encoding an identical set of 112 genes. An inversion of a fragment with ca. 8 kb, located in the IRs and containing the genes trnI-AAU, ycf2, and trnL-CAA, was observed in these chloroplast genomes when compared with those of other Lamiales. CONCLUSIONS: Anemopaegma species have the largest genomes within the Lamiales possibly due to the large amount of repetitive sequences and IR expansion. Variation was higher in coding regions than in noncoding regions, and some genes were identified as markers for differentiation between species. The use of the entire chloroplast genome gave better phylogenetic resolution of the taxonomic groups. We found that two forms of A. acutifolium result from different maternal lineages.


Assuntos
Bignoniaceae/classificação , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Bignoniaceae/genética , Cloroplastos/genética , Inversão Cromossômica , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
12.
J Exp Bot ; 66(14): 4239-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26093024

RESUMO

Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.


Assuntos
Marcadores Genéticos , Mutagênese Insercional , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Saccharum/genética
13.
BMC Genomics ; 15: 540, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24984568

RESUMO

BACKGROUND: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome. RESULTS: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences. CONCLUSION: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery.


Assuntos
Genoma de Planta , Saccharum/genética , Sequência de Bases , Evolução Biológica , Biotecnologia , Cromossomos Artificiais Bacterianos , Duplicação Gênica , Biblioteca Gênica , Haplótipos , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Poliploidia , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Sorghum/genética
14.
BMC Genomics ; 14: 761, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24195767

RESUMO

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Assuntos
Flagelos/genética , Aptidão Genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Sequência de Bases , Evolução Molecular , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Flagelos/fisiologia , Genoma Bacteriano , Filogenia , Doenças das Plantas/genética , Sementes/genética , Sementes/microbiologia , Análise de Sequência de DNA , Xanthomonas/classificação , Xanthomonas/patogenicidade
15.
Front Plant Sci ; 14: 1198197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426986

RESUMO

[This corrects the article DOI: 10.3389/fpls.2022.971235.].

16.
Microbiol Spectr ; 11(3): e0280222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37052486

RESUMO

An integrative approach combining genomics, transcriptomics, and cell biology is presented to address leaf scald disease, a major problem for the sugarcane industry. To gain insight into the biology of the causal agent, the complete genome sequences of four Brazilian Xanthomonas albilineans strains with differing virulence capabilities are presented and compared to the GPEPC73 reference strain and FJ1. Based on the aggressiveness index, different strains were compared: Xa04 and Xa11 are highly aggressive, Xa26 is intermediate, and Xa21 is the least, while, based on genome structure, Xa04 shares most of its genomic features with Xa26, and Xa11 share most of its genomic features with Xa21. In addition to presenting more clustered regularly interspaced short palindromic repeats (CRISPR) clusters, four more novel prophage insertions are present than the previously sequenced GPEPC73 and FJ1 strains. Incorporating the aggressiveness index and in vitro cell biology into these genome features indicates that disease establishment is not a result of a single determinant factor, as in most other Xanthomonas species. The Brazilian strains lack the previously described plasmids but present more prophage regions. In pairs, the most virulent and the least virulent share unique prophages. In vitro transcriptomics shed light on the 54 most highly expressed genes among the 4 strains compared to ribosomal proteins (RPs), of these, 3 outer membrane proteins. Finally, comparative albicidin inhibition rings and in vitro growth curves of the four strains also do not correlate with pathogenicity. In conclusion, the results disclose that leaf scald disease is not associated with a single shared characteristic between the most or the least pathogenic strains. IMPORTANCE An integrative approach is presented which combines genomics, transcriptomics, and cell biology to address leaf scald disease. The results presented here disclose that the disease is not associated with a single shared characteristic between the most pathogenic strains or a unique genomic pattern. Sequence data from four Brazilian strains are presented that differ in pathogenicity index: Xa04 and Xa11 are highly virulent, Xa26 is intermediate, and Xa21 is the least pathogenic strain, while, based on genome structure, Xa04 shares with Xa26, and Xa11 shares with X21 most of the genome features. Other than presenting more CRISPR clusters and prophages than the previously sequenced strains, the integration of aggressiveness and cell biology points out that disease establishment is not a result of a single determinant factor as in other xanthomonads.


Assuntos
Genoma Bacteriano , Doenças das Plantas , Saccharum , Xanthomonas , Brasil , Genômica , Xanthomonas/classificação , Xanthomonas/genética , Xanthomonas/patogenicidade , Saccharum/microbiologia , Doenças das Plantas/microbiologia , Variação Genética , Filogenia , Perfilação da Expressão Gênica , Transcriptoma , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Família Multigênica/genética
17.
PeerJ ; 11: e14973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214086

RESUMO

De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.


Assuntos
Poaceae , Saccharum , Poaceae/metabolismo , Saccharum/genética , Tiamina , Fatores de Transcrição/genética , Folhas de Planta/metabolismo
18.
Plant Physiol Biochem ; 203: 108033, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757720

RESUMO

Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X. albilineans using molecular and biochemical approaches to assess pathogen-triggered ROS, phytohormones and metabolomics in two contrasting sugarcane genotypes from 0.5 to 144 h post-inoculation (hpi). In addition, the infection process was monitored using TaqMan-based quantification of X. albilineans and the disease symptoms were evaluated in both genotypes after 15 d post-inoculation (dpi). The susceptible genotype presented a response to the infection at 0.5 hpi, accumulating defense-related metabolites such as phenolics and flavonoids with no significant defense responses thereafter, resulting in typical symptoms of leaf scald at 15 dpi. The resistant genotype did not respond to the infection at 0.5 hpi but constitutively presented higher levels of salicylic acid and of the same metabolites induced by the infection in the susceptible genotype. Moreover, two subsequent pathogen-induced metabolic responses at 12 and 144 hpi were observed only in the resistant genotype in terms of amino acids, quinic acids, coumarins, polyamines, flavonoids, phenolics and phenylpropanoids together with an increase of hydrogen peroxide, ROS-related genes expression, indole-3-acetic-acid and salicylic acid. Multilevel approaches revealed that constitutive chemical composition and metabolic reprogramming hampers the development of leaf scald at 48 and 72 hpi, reducing the disease symptoms in the resistant genotype at 15 dpi. Phenylpropanoid pathway is suggested as a strong candidate marker for breeding sugarcane resistant to leaf scald.

19.
BMC Genomics ; 13: 137, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22507400

RESUMO

BACKGROUND: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. RESULTS: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. CONCLUSIONS: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.


Assuntos
Genômica , Retroelementos/genética , Saccharum/genética , Sequências Repetidas Terminais/genética , Cromossomos Artificiais Bacterianos/genética , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Metáfase/genética , Filogenia , RNA de Plantas/genética , RNA não Traduzido/genética , Saccharum/citologia , Transcrição Gênica/genética
20.
Mol Genet Genomics ; 287(3): 205-19, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22228195

RESUMO

Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.


Assuntos
Genoma de Planta/genética , Saccharum/genética , Transposases/genética , Sequência de Aminoácidos , Sequência de Bases , Elementos de DNA Transponíveis , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Saccharum/classificação , Saccharum/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA