Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(5): e16636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783572

RESUMO

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.


Assuntos
Fusarium , Variação Genética , Musa , Filogenia , Doenças das Plantas , Fusarium/genética , Fusarium/classificação , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Musa/microbiologia , Cuba , Doenças das Plantas/microbiologia , Região do Caribe , América Latina
2.
New Phytol ; 242(2): 610-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402521

RESUMO

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Assuntos
Fusarium , Genoma Fúngico , Duplicações Segmentares Genômicas , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Plant Dis ; 107(3): 628-632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35984393

RESUMO

Fusarium wilt of banana (FWB) is a serious soil-borne fungal disease. In the previous century, FWB already destroyed Gros Michel-based banana cultures in Central America, and currently, the disease threatens all major banana-producing regions of the world. The causal agents of these epidemics, however, are diverse. Gros Michel was infected by a wide range of Fusarium species, the so-called Race 1 strains, whereas the contemporary Cavendish-based cultures are affected by Fusarium odoratissimum, colloquially called Tropical Race 4 (TR4). TR4 was reported in Mozambique on two commercial banana farms in 2013, but no incursions were found outside the farm boundaries in 2015, suggesting that the disease was under control. Here we report the presence of TR4 outside of these farm boundaries. We obtained fungal samples from 13 banana plants in smallholder and roadside plantings at various locations throughout northern Mozambique. These samples tested positive for TR4 by molecular diagnostics and in greenhouse pathogenicity assays. The results were confirmed with reisolations, thereby completing Koch's postulates. To study the diversity of TR4 isolates in Mozambique, we selected five samples for whole-genome sequencing. Comparison with a global collection of TR4 samples revealed very little genetic variation, indicating that the fungus is clonally spreading in Mozambique. Furthermore, isolates from Mozambique are clearly genetically separated from other geographic incursions, and thus we cannot trace the origin of TR4 in Mozambique. Nevertheless, our data demonstrates the dissemination of TR4 in Mozambique, underscoring the failure of disease management strategies. This threatens African banana production.


Assuntos
Fusarium , Musa , Musa/microbiologia , Moçambique , Doenças das Plantas/microbiologia
5.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37972272

RESUMO

Accurate taxonomic classification of samples from infected host material is essential for disease diagnostics and genome analyses. Despite the importance, diagnosis of fungal pathogens causing banana leaf diseases remains challenging. Foliar diseases of bananas are mainly caused by 3 Pseudocercospora species, of which the most predominant causal agent is Pseudocercospora fijiensis. Here, we sequenced and assembled four fungal isolates obtained from necrotic banana leaves in Bohol (Philippines) and obtained a high-quality genome assembly for one of these isolates. The samples were initially identified as P. fijiensis using PCR diagnostics; however, the assembly size was consistently 30 Mb smaller than expected. Based on the internal transcribed spacer (ITS) sequences, we identified the samples as Zasmidium syzygii (98.7% identity). The high-quality Zasmidium syzygii assembly is 42.5 Mb in size, comprising 16 contigs, of which 11 are most likely complete chromosomes. The genome contains 98.6% of the expected single-copy BUSCO genes and contains 14,789 genes and 10.3% repeats. The 3 short-read assemblies are less continuous but have similar genome sizes (40.4-42.4 Mb) and contain between 96.5 and 98.4% BUSCO genes. All 4 isolates have identical ITS sequences and are distinct from Zasmidium isolates that were previously sampled from banana leaves. We thus report the first continuous genome assembly of a member of the Zasmidium genus, forming an essential resource for further analysis to enhance our understanding of the diversity of pathogenic fungal isolates as well as fungal diversity.


Assuntos
Ascomicetos , Musa , Musa/genética , Sequência de Bases , Cromossomos , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA