RESUMO
RBM20 cardiomyopathy is an arrhythmogenic form of dilated cardiomyopathy caused by mutations in the splicing factor RBM20. A recent study found a more severe phenotype in male patients with RBM20 cardiomyopathy patients than in female patients. Here, we aim to determine sex differences in an animal model of RBM20 cardiomyopathy and investigate potential underlying mechanisms. In addition, we aim to determine sex and gender differences in clinical parameters in a novel RBM20 cardiomyopathy patient cohort. We characterized an Rbm20 knockout (KO) mouse model, and show that splicing of key RBM20 targets, cardiac function, and arrhythmia susceptibility do not differ between sexes. Next, we performed deep phenotyping of these mice, and show that male and female Rbm20-KO mice possess transcriptomic and phosphoproteomic differences. Hypothesizing that these differences may influence the heart's ability to compensate for stress, we exposed Rbm20-KO mice to acute catecholaminergic stimulation and again found no functional differences. We also replicate the lack of functional differences in a mouse model with the Rbm20-R636Q mutation. Lastly, we present a patient cohort of 33 RBM20 cardiomyopathy patients and show that these patients do not possess sex and gender differences in disease severity. Current mouse models of RBM20 cardiomyopathy show more pronounced changes in gene expression and phosphorylation of cardiac proteins in male mice, but no sex differences in cardiac morphology and function. Moreover, other than reported before, male RBM20 cardiomyopathy patients do not present with worse cardiac function in a patient cohort from Germany and the Netherlands.NEW & NOTEWORTHY Optimal management of the cardiac disease is increasingly personalized, partly because of differences in outcomes between sexes. RBM20 cardiomyopathy has been described to be more severe in male patients, and this carries the risk that male patients are more scrutinized in the clinic than female patients. Our findings do not support this observation and suggest that treatment should not differ between male and female RBM20 cardiomyopathy patients, but instead should focus on the underlying disease mechanism.
Assuntos
Cardiomiopatias , Proteínas de Ligação a RNA , Camundongos , Masculino , Feminino , Animais , Proteínas de Ligação a RNA/genética , Arritmias Cardíacas/genética , Mutação , Camundongos Knockout , Índice de Gravidade de DoençaRESUMO
Circular RNAs (circRNAs) are a relatively new class of RNA molecules, and knowledge about their biogenesis and function is still in its infancy. It was recently shown that alternative splicing underlies the formation of circular RNAs (circRNA) arising from the Titin (TTN) gene. Since the main mechanism by which circRNAs are formed is still unclear, we hypothesized that alternative splicing, and in particular exon skipping, is a major driver of circRNA production. We performed RNA sequencing on human and mouse hearts, mapped alternative splicing events, and overlaid these with expressed circRNAs at exon-level resolution. In addition, we performed RNA sequencing on hearts of Rbm20 KO mice to address how important Rbm20-mediated alternative splicing is in the production of cardiac circRNAs. In human and mouse hearts, we show that cardiac circRNAs are mostly (â¼90%) produced from constitutive exons and less (â¼10%) from alternatively spliced exons. In Rbm20 KO hearts, we identified 38 differentially expressed circRNAs of which 12 were produced from the Ttn gene. Even though Ttn appeared the most prominent target of Rbm20 for circularization, we also detected Rbm20-dependent circRNAs arising from other genes including Fan1, Stk39, Xdh, Bcl2l13, and Sorbs1 Interestingly, only Ttn circRNAs seemed to arise from Rbm20-mediated skipped exons. In conclusion, cardiac circRNAs are mostly derived from constitutive exons, suggesting that these circRNAs are generated at the expense of their linear counterpart and that circRNA production impacts the accumulation of the linear mRNA.
Assuntos
Processamento Alternativo , Éxons , Regulação da Expressão Gênica , Coração/fisiologia , Proteínas de Ligação a RNA/fisiologia , RNA/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Knockout , RNA CircularRESUMO
BACKGROUND: Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism. METHODS: We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca2+ measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels. RESULTS: Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively, P=0.006). Splicing events that affected Ca2+- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca2+ current ( ICa,L). In line with this, we found an increased ICa,L, intracellular Ca2+ overload and increased sarcoplasmic reticulum Ca2+ content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca2+ releases, which could be attenuated by treatment with the ICa,L antagonist verapamil. CONCLUSIONS: We show that loss of Rbm20 disturbs Ca2+ handling and leads to more proarrhythmic Ca2+ releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an ICa,L blocker to reduce their arrhythmia burden.
Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Frequência Cardíaca/genética , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Taquicardia Ventricular/genética , Fibrilação Ventricular/genética , Potenciais de Ação/genética , Adulto , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Conectina/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Ratos , Estudos Retrospectivos , Fatores de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologiaRESUMO
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Chagásica/enzimologia , Mediadores da Inflamação/metabolismo , Miocardite/enzimologia , Miocárdio/enzimologia , Animais , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Miocardite/genética , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Necrose , Conformação Proteica , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.
Assuntos
Cardiopatias/genética , Miocárdio/metabolismo , Splicing de RNA , RNA/genética , RNA/metabolismo , Processamento Alternativo , Animais , Regulação da Expressão Gênica , Terapia Genética/métodos , Cardiopatias/metabolismo , Cardiopatias/terapia , Humanos , Mutação , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Spliceossomos/metabolismoRESUMO
RATIONALE: RNA-binding motif protein 20 (RBM20) is essential for normal splicing of many cardiac genes, and loss of RBM20 causes dilated cardiomyopathy. Given its role in splicing, we hypothesized an important role for RBM20 in forming circular RNAs (circRNAs), a novel class of noncoding RNA molecules. OBJECTIVE: To establish the role of RBM20 in the formation of circRNAs in the heart. METHODS AND RESULTS: Here, we performed circRNA profiling on ribosomal depleted RNA from human hearts and identified the expression of thousands of circRNAs, with some of them regulated in disease. Interestingly, we identified 80 circRNAs to be expressed from the titin gene, a gene that is known to undergo highly complex alternative splicing. We show that some of these circRNAs are dynamically regulated in dilated cardiomyopathy but not in hypertrophic cardiomyopathy. We generated RBM20-null mice and show that they completely lack these titin circRNAs. In addition, in a cardiac sample from an RBM20 mutation carrier, titin circRNA production was severely altered. Interestingly, the loss of RBM20 caused only a specific subset of titin circRNAs to be lost. These circRNAs originated from the RBM20-regulated I-band region of the titin transcript. CONCLUSIONS: We show that RBM20 is crucial for the formation of a subset of circRNAs that originate from the I-band of the titin gene. We propose that RBM20, by excluding specific exons from the pre-mRNA, provides the substrate to form this class of RBM20-dependent circRNAs.
Assuntos
Conectina/biossíntese , Proteínas de Ligação a RNA/fisiologia , RNA/biossíntese , Adulto , Animais , Sítios de Ligação/fisiologia , Conectina/genética , Feminino , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , RNA/genética , RNA CircularRESUMO
Dilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart. We employ a combination of the viral vector AAVMYO with superior targeting specificity of heart muscle tissue and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20, which cause aggressive dilated cardiomyopathy. Using optimized conditions, we repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we have generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restores the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reach wild-type levels. Single-nuclei RNA sequencing uncovers restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing reveals no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.
Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Cardiomiopatia Dilatada/metabolismo , Edição de Genes , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Miocárdio/metabolismo , Mutação , Miócitos Cardíacos/metabolismoRESUMO
RATIONALE: The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. OBJECTIVE: To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. METHODS AND RESULTS: Here, we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, whereas deletion with ß-myosin heavy chain-cre (ßMHC-cre) produced viable adults with >95% loss of GATA-6 protein in the heart. These latter mice were subjected to pressure overload-induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure, whereas control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. CONCLUSIONS: These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4.
Assuntos
Cardiomegalia , Fator de Transcrição GATA6/genética , Animais , Pressão Sanguínea/fisiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Homeostase/genética , Camundongos , Camundongos Transgênicos , Transcrição Gênica/fisiologiaRESUMO
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
RESUMO
The RNA-binding protein Rbm24 has recently been identified as a pivotal splicing factor in the developing heart. Loss of Rbm24 in mice disrupts cardiac development by governing a large number of muscle-specific splicing events. Since Rbm24 knockout mice are embryonically lethal, the role of Rbm24 in the adult heart remained unexplored. Here, we used adeno-associated viruses (AAV9) to investigate the effect of increased Rbm24 levels in adult mouse heart. Using high-resolution microarrays, we found 893 differentially expressed genes and 1102 differential splicing events in 714 genes in hearts overexpressing Rbm24. We found splicing differences in cardiac genes, such as PDZ and Lim domain 5, Phospholamban, and Titin, but did not find splicing differences in previously identified embryonic splicing targets of Rbm24, such as skNAC, αNAC, and Coro6. Gene ontology enrichment analysis demonstrated increased expression of extracellular matrix (ECM)-related and immune response genes. Moreover, we found increased expression of Tgfß-signaling genes, suggesting enhanced Tgfß-signaling in these hearts. Ultimately, this increased activation of cardiac fibroblasts, as evidenced by robust expression of Periostin in the heart, and induced extensive cardiac fibrosis. These results indicate that Rbm24 may function as a regulator of cardiac fibrosis, potentially through the regulation of TgfßR1 and TgfßR2 expression.
Assuntos
Dependovirus/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Fenótipo , Transcriptoma/genéticaRESUMO
The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor, which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in RNA processes such as RNA splicing, RNA stability and RNA translation, but its function in the heart is currently unknown. Here, we investigated the role of Rbm38 in the healthy and diseased adult mouse heart. In contrast to the heart- and skeletal muscle-enriched protein Rbm24, Rbm38 appears to be more broadly expressed. We generated somatic Rbm38 -/- mice and show that global loss of Rbm38 results in hematopoietic defects. Specifically, Rbm38 -/- mice were anemic and displayed enlarged spleens with extramedullary hematopoiesis, as has been shown earlier. The hearts of Rbm38 -/- mice were mildly hypertrophic, but cardiac function was not affected. Furthermore, Rbm38 deficiency did not affect cardiac remodeling (i.e. hypertrophy, LV dilation and fibrosis) or performance (i.e. fractional shortening) after pressure-overload induced by transverse aorta constriction. To further investigate molecular consequences of Rbm38 deficiency, we examined previously identified RNA stability, splicing, and translational targets of Rbm38. We found that stability targets p21 and HuR, splicing targets Mef2d and Fgfr2, and translation target p53 were not altered, suggesting that these Rbm38 targets are tissue-specific or that Rbm38 deficiency may be counteracted by a redundancy mechanism. In this regard, we found a trend towards increased Rbm24 protein expression in Rbm38 -/- hearts. Overall, we conclude that Rbm38 is critical in hematopoiesis, but does not play a critical role in the healthy and diseased heart.
Assuntos
Cardiomegalia/metabolismo , Hematopoese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Remodelação Ventricular/fisiologia , Anemia/genética , Anemia/metabolismo , Animais , Cardiomegalia/genética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Splicing de RNA , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Baço/metabolismoRESUMO
Distinct stressors may induce heart failure. As compensation, ß-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca(2+) ([Ca(2+)]i). However, chronic ß-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by ß-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with ß-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca(2+)]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca(2+)]i, Ca(2+)-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca(2+) homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca(2+) homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure.
Assuntos
Insuficiência Cardíaca/genética , Contração Miocárdica/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Remodelação Ventricular/genética , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Cálcio/metabolismo , Insuficiência Cardíaca/fisiopatologia , Homeostase , Humanos , Isoproterenol/administração & dosagem , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Remodelação Ventricular/fisiologiaRESUMO
Peroxisome proliferator-activated receptor δ (PPARδ) is a critical regulator of energy metabolism in the heart. Here, we propose a mechanism that integrates two deleterious characteristics of heart failure, hypoxia and a metabolic shift toward glycolysis, involving the microRNA cluster miR-199aâ¼214 and PPARδ. We demonstrate that under hemodynamic stress, cardiac hypoxia activates DNM3os, a noncoding transcript that harbors the microRNA cluster miR-199aâ¼214, which shares PPARδ as common target. To address the significance of miR-199aâ¼214 induction and concomitant PPARδ repression, we performed antagomir-based silencing of both microRNAs and subjected mice to biomechanical stress to induce heart failure. Remarkably, antagomir-treated animals displayed improved cardiac function and restored mitochondrial fatty acid oxidation. Taken together, our data suggest a mechanism whereby miR-199aâ¼214 actively represses cardiac PPARδ expression, facilitating a metabolic shift from predominant reliance on fatty acid utilization in the healthy myocardium toward increased reliance on glucose metabolism at the onset of heart failure.