Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(7): 3619-3625, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865992

RESUMO

Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection. In this report, we show that carbon dioxide (CO2), a much cheaper gas than xenon, can enhance PT signals in a similar way. We confine near-critical CO2 in a thin capillary which easily withstands the high near-critical pressure (around 74 bar) and facilitates sample preparation. We also demonstrate enhancement of the magnetic circular dichroism signal of single magnetite nanoparticle clusters in supercritical CO2. We have performed COMSOL simulations to support and explain our experimental findings.

2.
Rev Sci Instrum ; 93(1): 013103, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104947

RESUMO

We present a cryogenic setup where an optical Fabry-Perot resonator is coupled to a single-mode optical fiber with coupling efficiency above 90% at mK temperatures without realignment during cooling down. The setup is prealigned at room temperature to compensate for the thermal contraction and change of the refractive index of the optical components during cooling down. The high coupling efficiency is achieved by keeping the setup rotation-symmetric around the optical axis. The majority of the setup components are made of Invar (FeNi36), which minimizes the thermal contraction. High coupling efficiency is essential in quantum optomechanical experiments.

3.
Proc Natl Acad Sci U S A ; 105(13): 4993-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18362347

RESUMO

We probe the mechanical response of two supercooled liquids, glycerol and ortho-terphenyl, by conducting rheological experiments at very weak stresses. We find a complex fluid behavior suggesting the gradual emergence of an extended, delicate solid-like network in both materials in the supercooled state-i.e., above the glass transition. This network stiffens as it ages, and very early in this process it already extends over macroscopic distances, conferring all well known features of soft glassy rheology (yield-stress, shear thinning, aging) to the supercooled liquids. Such viscoelastic behavior of supercooled molecular glass formers is difficult to observe because the large stresses in conventional rheology can easily shear-melt the solid-like structure. The work presented here, combined with evidence for long-lived heterogeneity from previous single-molecule studies [Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Local viscosity of supercooled glycerol near T(g) probed by rotational diffusion of ensembles and single dye molecules. Proc Natl Acad Sci USA 104:12628-12633], has a profound impact on the understanding of the glass transition because it casts doubt on the widely accepted assumption of the preservation of ergodicity in the supercooled state.

4.
PLoS One ; 15(5): e0232555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392255

RESUMO

We report an easy, efficient and reproducible way to prepare Rapid-Freeze-Quench samples in sub-millimeter capillaries and load these into the probe head of a 275 GHz Electron Paramagnetic Resonance spectrometer. Kinetic data obtained for the binding reaction of azide to myoglobin demonstrate the feasibility of the method for high-frequency EPR. Experiments on the same samples at 9.5 GHz show that only a single series of Rapid-Freeze-Quench samples is required for studies at multiple microwave frequencies.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Animais , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Congelamento , Cavalos , Cinética , Micro-Ondas , Mioglobina/química
5.
Rev Sci Instrum ; 90(1): 015112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709182

RESUMO

We present the design and implementation of a mechanical low-pass filter vibration isolation used to reduce the vibrational noise in a cryogen-free dilution refrigerator operated at 10 mK, intended for scanning probe techniques. We discuss the design guidelines necessary to meet the competing requirements of having a low mechanical stiffness in combination with a high thermal conductance. We demonstrate the effectiveness of our approach by measuring the vibrational noise levels of an ultrasoft mechanical resonator positioned above a superconducting quantum interference device. Starting from a cryostat base temperature of 8 mK, the vibration isolation can be cooled to 10.5 mK, with a cooling power of 113 µW at 100 mK. We use the low vibrations and low temperature to demonstrate an effective cantilever temperature of less than 20 mK. This results in a force sensitivity of less than 500 zN/Hz and an integrated frequency noise as low as 0.4 mHz in a 1 Hz measurement bandwidth.

6.
Rev Sci Instrum ; 79(4): 046107, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18447565

RESUMO

Complete orientation studies of X-band electron-paramagnetic-resonance spectra of crystals largely benefit from the possibility to measure the spectrum for any orientation of the magnetic field with respect to the crystal without the need to remount the crystal. We report on a modification of a commercial cryostat to allow such experiments down to liquid helium temperatures and demonstrate its performance.

7.
Biophys J ; 90(8): 2958-69, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16443653

RESUMO

We demonstrate a novel technique to achieve fast thermal cycles of a small sample (a few femtoliters). Modulating a continuous near-infrared laser focused on a metal film, we can drive the local temperature from 130 to 300 K and back, within a few microseconds. By fluorescence microscopy of dyes in a thin glycerol film, we record images of the hot spot, calibrate its temperature, and follow its variations in real time. The temperature dependence of fluorescence anisotropy, due to photophysics and rotational diffusion, gives a steady-state temperature calibration between 200 and 350 K. From 200 to 220 K, we monitor temperature more accurately by fluorescence autocorrelation, a probe for rotational diffusion. Time-resolved measurements of fluorescence anisotropy give heating and cooling times of a few microseconds, short enough to supercool pure water. We designed our method to repeatedly cycle a single (bio)molecule between ambient and cryostat temperatures with microsecond time resolution. Successive measurements of a structurally relevant variable will decompose a dynamical process into structural snapshots. Such temperature-cycle experiments, which combine a high time resolution with long observation times, can thus be expected to yield new insights into complex processes such as protein folding.


Assuntos
Lasers , Temperatura , Termodinâmica , Difusão , Polarização de Fluorescência , Corantes Fluorescentes/química , Glicerol/química , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA