Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Arch Toxicol ; 97(7): 1997-2014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210688

RESUMO

Cutaneous basal and squamous cell carcinoma reflect the first and second most common type of non-melanoma skin cancer, respectively. Especially cutaneous squamous cell carcinoma has the tendency to metastasize, finally resulting in a rather poor prognosis. Therapeutic options comprise surgery, radiation therapy, and a systemic or targeted chemotherapy. There are some good treatment results, but overall, the response rate of newly developed drugs is still modest. Drug repurposing represents an alternative approach where already available and clinically approved substances are used, which originally intended for other clinical benefits. In this context, we tested the effect of the naturally occurring polyphenolic aldehyde (±) gossypol with concentrations between 1 and 5 µM on the invasive squamous cell carcinoma cell line SCL-1 and normal human epidermal keratinocytes. Gossypol treatment up to 96 h resulted in a selective cytotoxicity of SCL-1 cells (IC50: 1.7 µM, 96 h) compared with normal keratinocytes (IC50: ≥ 5.4 µM, 96 h) which is mediated by mitochondrial dysfunction and finally leading to necroptotic cell death. Taken together, gossypol shows a high potential as an alternative anticancer drug for the treatment of cutaneous squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Gossipol , Neoplasias Cutâneas , Humanos , Gossipol/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Necroptose , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral
2.
Arch Toxicol ; 95(4): 1349-1365, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33523262

RESUMO

A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the "parent" compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Gossipol/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Gossipol/toxicidade , Humanos , Melanoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia
3.
PLoS One ; 19(3): e0300718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512909

RESUMO

BACKGROUND: Malignant melanoma is the most aggressive form of skin cancer with a rather poor prognosis. Standard chemotherapy often results in severe side effects on normal (healthy) cells finally being difficult to tolerate for the patients. Shown by us earlier, cerium oxide nanoparticles (CNP, nanoceria) selectively killed A375 melanoma cells while not being cytotoxic at identical concentrations on non-cancerous cells. In conclusion, the redox-active CNP exhibited both prooxidative as well as antioxidative properties. In that context, CNP induced mitochondrial dysfunction in the studied melanoma cells via generation of reactive oxygene species (primarily hydrogen peroxide (H2O2)), but that does not account for 100% of the toxicity. AIM: Cancer cells often show an increased glycolytic rate (Warburg effect), therefore we focused on CNP mediated changes of the glucose metabolism. RESULTS: It has been shown before that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) activity is regulated via oxidation of a cysteine in the active center of the enzyme with a subsequent loss of activity. Upon CNP treatment, formation of cellular lactate and GAPDH activity were significantly lowered. The treatment of melanoma cells and melanocytes with the GAPDH inhibitor heptelidic acid (HA) decreased viability to a much higher extent in the cancer cells than in the studied normal (healthy) cells, highlighting and supporting the important role of GAPDH in cancer cells. CONCLUSION: We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a target protein for CNP mediated thiol oxidation.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Peróxido de Hidrogênio/farmacologia , Gliceraldeído 3-Fosfato , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Ácido Láctico/uso terapêutico
4.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061932

RESUMO

Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly effective standard chemotherapeutic agent doxorubicin (DOX) is widely used in a variety of cancers, systemic side effects still limit therapy. Especially, DOX-induced cardiotoxicity remains a big challenge. In contrast, the natural chalcone cardamonin (CD) has been shown to selectively kill tumor cells. Besides its anti-tumor activity, CD exhibits anti-oxidative, anti-inflammatory and anti-bacterial properties. In this study, we investigated the effect of the combinational treatment of DOX with CD on A375 melanoma cells compared to normal human dermal fibroblasts (NHDF) and rat cardiac myoblasts (H9C2 cells). DOX-induced cytotoxicity was unselective and affected all cell types, especially H9C2 cardiac myoblasts, demonstrating its cardiotoxic effect. In contrast, CD only decreased the cell viability of A375 melanoma cells, without harming normal (healthy) cells. The addition of CD selectively protected human dermal fibroblasts and rat cardiac myoblasts from DOX-induced cytotoxicity. While no apoptosis was induced by the combinational treatment in normal (healthy) cells, an apoptosis-mediated cytotoxicity was demonstrated in A375 melanoma cells. CD exhibited thiol reactivity as it was able to directly interact with N-acetylcysteine (NAC) in a cell-free assay and to induce heme oxygenase-1 (HO-1) in all cell types. And that took place in a reactive oxygen species (ROS)-independent manner. DOX decreased the mitochondrial membrane potential (Δψm) in all cell types, whereas CD selectively decreased mitochondrial respiration, affecting basal respiration, maximal respiration, spare respiratory capacity and ATP production in A375 melanoma cells, but not in healthy cardiac myoblasts. The DOX-induced cytotoxicity seen in melanoma cells was ROS-independent, whereas the cytotoxic effect of CD was associated with CD-induced ROS-formation and/or its thiol reactivity. This study highlights the beneficial properties of the addition of CD to DOX treatment, which might protect patients from DOX-induced cardiotoxicity. Future experiments with other tumor cell lines or a mouse model should substantiate this hypothesis.

5.
J Hepatol ; 59(4): 805-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707365

RESUMO

BACKGROUND & AIMS: The pathogenesis of alcohol-induced liver disease (ALD) is poorly understood. Here, we examined the role of acid sphingomyelinase (ASMase) in alcohol induced hepatic endoplasmic reticulum (ER) stress, a key mechanism of ALD. METHODS: We examined ER stress, lipogenesis, hyperhomocysteinemia, mitochondrial cholesterol (mChol) trafficking and susceptibility to LPS and concanavalin-A in ASMase(-)(/-) mice fed alcohol. RESULTS: Alcohol feeding increased SREBP-1c, DGAT-2, and FAS mRNA in ASMase(+/+) but not in ASMase(-/-) mice. Compared to ASMase(+/+) mice, ASMase(-/-) mice exhibited decreased expression of ER stress markers induced by alcohol, but the level of tunicamycin-mediated upregulation of ER stress markers and steatosis was similar in both types of mice. The increase in homocysteine levels induced by alcohol feeding was comparable in both ASMase(+/+) and ASMase(-/-) mice. Exogenous ASMase, but not neutral SMase, induced ER stress by perturbing ER Ca(2+) homeostasis. Moreover, alcohol-induced mChol loading and StARD1 overexpression were blunted in ASMase(-/-) mice. Tunicamycin upregulated StARD1 expression and this outcome was abrogated by tauroursodeoxycholic acid. Alcohol-induced liver injury and sensitization to LPS and concanavalin-A were prevented in ASMase(-/-) mice. These effects were reproduced in alcohol-fed TNFR1/R2(-/-) mice. Moreover, ASMase does not impair hepatic regeneration following partial hepatectomy. Of relevance, liver samples from patients with alcoholic hepatitis exhibited increased expression of ASMase, StARD1, and ER stress markers. CONCLUSIONS: Our data indicate that ASMase is critical for alcohol-induced ER stress, and provide a rationale for further clinical investigation in ALD.


Assuntos
Colesterol/metabolismo , Estresse do Retículo Endoplasmático , Hepatopatias Alcoólicas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Amitriptilina/farmacologia , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatite Alcoólica/etiologia , Hepatite Alcoólica/metabolismo , Hepatite Alcoólica/patologia , Humanos , Hiper-Homocisteinemia/complicações , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética
6.
Toxicol In Vitro ; 91: 105625, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268255

RESUMO

Neuroblastoma is the most common extracranial malignant tumor in childhood. Approximately 60% of all patients are classified as high-risk and require intensive treatment including non-selective chemotherapeutic agents leading to severe side effects. Recently, phytochemicals like the natural chalcone cardamonin (CD) have gained attention in cancer research. For the first time, we investigated the selective anti-cancer effects of CD in SH-SY5Y human neuroblastoma cells compared to healthy (normal) fibroblasts (NHDF). Our study revealed selective and dose-dependent cytotoxicity of CD in SH-SY5Y. The natural chalcone CD specifically altered the mitochondrial membrane potential (ΔΨm), as an early marker of apoptosis, in human neuroblastoma cells. Caspase activity was also selectively induced and the amount of cleaved caspase substrates such as PARP was thus increased in human neuroblastoma cells. CD-mediated apoptotic cell death was rescued by pan caspase inhibitor Z-VAD-FMK. The natural chalcone CD selectively induced apoptosis, the programmed cell death, in SH-SY5Y human neuroblastoma cells whereas NHDF being a model for normal (healthy) cells were unaffected. Our data indicates a clinical potential of CD in the more selective and less harmful treatment of neuroblastoma.


Assuntos
Chalcona , Chalconas , Neuroblastoma , Humanos , Chalconas/farmacologia , Neuroblastoma/metabolismo , Chalcona/farmacologia , Linhagem Celular Tumoral , Apoptose , Caspases/metabolismo , Caspase 3/metabolismo
7.
Biomedicines ; 11(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37760834

RESUMO

Despite great efforts to develop new therapeutic strategies to combat melanoma, the prognosis remains rather poor. Artesunate (ART) is an antimalarial drug displaying anti-cancer effects in vitro and in vivo. In this in vitro study, we investigated the selectivity of ART on melanoma cells. Furthermore, we aimed to further elucidate the mechanism of the drug with a focus on the role of iron, the induction of oxidative stress and the implication of the enzyme heme oxygenase 1 (HO-1). ART treatment decreased the cell viability of A375 melanoma cells while it did not affect the viability of normal human dermal fibroblasts, used as a model for normal (healthy) cells. ART's toxicity was shown to be dependent on intracellular iron and the drug induced high levels of oxidative stress as well as upregulation of HO-1. Melanoma cells deficient in HO-1 or treated with a HO-1 inhibitor were less sensitive towards ART. Taken together, our study demonstrates that ART induces oxidative stress resulting in the upregulation of HO-1 in melanoma cells, which subsequently triggers the effect of ART's own toxicity. This new finding that HO-1 is involved in ART-mediated toxicity may open up new perspectives in cancer therapy.

8.
J Hepatol ; 57(4): 852-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22687340

RESUMO

BACKGROUND & AIMS: Steatohepatitis (SH) is associated with mitochondrial dysfunction and excessive production of superoxide, which can then be converted into H(2)O(2) by SOD2. Since mitochondrial GSH (mGSH) plays a critical role in H(2)O(2) reduction, we explored the interplay between superoxide, H(2)O(2), and mGSH in nutritional and genetic models of SH, which exhibit mGSH depletion. METHODS: We used isolated mitochondria and primary hepatocytes, as well as in vivo SH models showing mGSH depletion to test the consequences of superoxide scavenging. RESULTS: In isolated mitochondria and primary hepatocytes, superoxide scavenging by SOD mimetics or purified SOD decreased superoxide and peroxynitrite generation but increased H(2)O(2) following mGSH depletion, despite mitochondrial peroxiredoxin/thioredoxin defense. Selective mGSH depletion sensitized hepatocytes to cell death induced by SOD mimetics, and this was prevented by RIP1 kinase inhibition with necrostatin-1 or GSH repletion with GSH ethyl ester (GSHee). Mice fed the methionine-choline deficient (MCD) diet or MAT1A(-/-) mice exhibited reduced SOD2 activity; in vivo treatment with SOD mimetics increased liver damage, inflammation, and fibrosis, despite a decreased superoxide and 3-nitrotyrosine immunoreactivity, effects that were ameliorated by mGSH replenishment with GSHee, but not NAC. As a proof-of-principle of the detrimental role of superoxide scavenging when mGSH was depleted transgenic mice overexpressing SOD2 exhibited enhanced susceptibility to MCD-mediated SH. CONCLUSIONS: These findings underscore a critical role for mGSH in the therapeutic potential of superoxide scavenging in SH, and suggest that the combined approach of superoxide scavenging with mGSH replenishment may be important in SH.


Assuntos
Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Oxirredução/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Alanina Transaminase/sangue , Animais , Antimicina A/farmacologia , Apoptose , Deficiência de Colina/complicações , Dieta , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/enzimologia , Sequestradores de Radicais Livres/farmacologia , Hepatócitos/enzimologia , Peróxido de Hidrogênio/metabolismo , Masculino , Metaloporfirinas/farmacologia , Metionina/deficiência , Metionina Adenosiltransferase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Hepáticas/enzimologia , Ácidos Pentanoicos/farmacologia , Peroxirredoxina III/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Tiorredoxinas/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 298(5): G657-66, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20203062

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is an acute phase protein that has been shown to play a role in experimental fibrosis caused by bile duct ligation (BDL) in mice. However, its role in more severe models of hepatic fibrosis (e.g., carbon tetrachloride; CCl(4)) has not been determined and is important for extrapolation to human disease. Wild-type or PAI-1 knockout mice were administered CCl(4) (1 ml/kg body wt ip) 2x/wk for 4 wk. Plasma (e.g., transaminase activity) and histological (e.g., Sirius red staining) indexes of liver damage and fibrosis were evaluated. Proliferation and apoptosis were assessed by PCNA and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively, as well as by indexes of cell cycle (e.g., p53, cyclin D1). In contrast to previous studies with BDL, hepatic fibrosis was enhanced in PAI-1(-/-) mice after chronic CCl(4) administration. Indeed, all indexes of liver damage were elevated in PAI-1(-/-) mice compared with wild-type mice. This enhanced liver damage correlated with impaired hepatocyte proliferation. A similar effect on proliferation was observed after one bolus dose of CCl(4), without concomitant increases in liver damage. Under these conditions, a decrease in phospho-p38, coupled with elevated p53 protein, was observed; these results suggest impaired proliferation and a potential G(1)/S cell cycle arrest in PAI-1(-/-) mice. These data suggest that PAI-1 may play multiple roles in chronic liver diseases, both protective and damaging, the latter mediated by its influence on inflammation and fibrosis and the former via helping maintain hepatocyte division after an injury.


Assuntos
Intoxicação por Tetracloreto de Carbono/patologia , Cirrose Hepática/prevenção & controle , Inibidor 1 de Ativador de Plasminogênio/deficiência , Animais , Apoptose/efeitos dos fármacos , Intoxicação por Tetracloreto de Carbono/complicações , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Cirrose Hepática/etiologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Hepatology ; 49(5): 1545-53, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19291788

RESUMO

UNLABELLED: The early stages of alcohol-induced liver injury involve chronic inflammation. Whereas mechanisms by which this effect is mediated are not completely understood, it is hypothesized that enhanced sensitivity to circulating lipopolysaccharide (LPS) contributes to this process. It has recently been shown that ethanol induces activation of plasminogen activator inhibitor-1 (PAI-1). PAI-1 causes fibrin accumulation in liver by inhibiting degradation of fibrin (fibrinolysis). LPS also enhances fibrin accumulation by activating the coagulation cascade. It was therefore hypothesized that ethanol will synergistically increase fibrin accumulation caused by LPS, enhancing liver damage. Accordingly, the effect of ethanol pretreatment on LPS-induced liver injury and fibrin deposition was determined in mice. Ethanol enhanced liver damage caused by LPS, as determined by plasma parameters and histological indices of inflammation and damage. This effect was concomitant with a significant increase in PAI-1 expression. Extracellular fibrin accumulation caused by LPS was also robustly increased by ethanol preexposure. Coadministration of the thrombin inhibitor hirudin or the MEK (mitogen-activated protein kinase) inhibitor U0126 significantly attenuated the enhanced liver damage caused by ethanol preexposure; this protection correlated with a significant blunting of the induction of PAI-1 caused by ethanol/LPS. Furthermore, thrombin/MEK inhibition prevented the synergistic effect of ethanol on the extracellular accumulation of fibrin caused by LPS. Similar protective effects on fibrin accumulation were observed in tumor necrosis factor receptor 1 (TNFR-1)(-/-) mice or in wild-type injected with PAI-1-inactivating antibody. CONCLUSION: These results suggest that enhanced LPS-induced liver injury caused by ethanol is mediated, at least in part, by fibrin accumulation in livers, mediated by an inhibition of fibrinolysis by PAI-1. These results also support the hypothesis that fibrin accumulation may play a critical role in the development of early alcohol-induced liver injury.


Assuntos
Etanol/toxicidade , Fibrina/metabolismo , Lipopolissacarídeos/toxicidade , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Antitrombina III , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/sangue , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Triglicerídeos/metabolismo
11.
PLoS One ; 15(1): e0227926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951630

RESUMO

Cerium (Ce) oxide nanoparticles (CNP; nanoceria) are reported to have cytotoxic effects on certain cancerous cell lines, while at the same concentration they show no cytotoxicity on normal (healthy) cells. Redox-active CNP exhibit both selective prooxidative as well as antioxidative properties. The former is proposed to be responsible for impairment of tumor growth and invasion and the latter for rescuing normal cells from reactive oxygen species (ROS)-induced damage. Here we address possible underlying mechanisms of prooxidative effects of CNP in a metastatic human melanoma cell line. Malignant melanoma is the most aggressive form of skin cancer, and once it becomes metastatic the prognosis is very poor. We have shown earlier that CNP selectively kill A375 melanoma cells by increasing intracellular ROS levels, whose basic amount is significantly higher than in the normal (healthy) counterpart, the melanocytes. Here we show that CNP initiate a mitochondrial increase of ROS levels accompanied by an increase in mitochondrial thiol oxidation. Furthermore, we observed CNP-induced changes in mitochondrial bioenergetics, dynamics, and cristae morphology demonstrating mitochondrial dysfunction which finally led to tumor cell death. CNP-induced cell death is abolished by administration of PEG-conjugated catalase. Overall, we propose that cerium oxide nanoparticles mediate cell death via hydrogen peroxide production linked to mitochondrial dysfunction.


Assuntos
Cério/farmacologia , Citotoxinas/farmacologia , Melanoma/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Catalase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cério/química , Citotoxinas/química , Humanos , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/patologia , Nanopartículas/química , Metástase Neoplásica , Compostos de Sulfidrila/metabolismo
12.
Arch Biochem Biophys ; 482(1-2): 104-11, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19022218

RESUMO

Steatosis is a critical stage in the pathology of alcoholic liver disease (ALD), and preventing steatosis could protect against later stages of ALD. PKCepsilon has been shown to contribute to hepatic steatosis in experimental non-alcoholic fatty liver disease (NAFLD); however, the role of PKCepsilon in ethanol-induced steatosis has not been determined. The purpose of this study was to therefore test the hypothesis that PKCepsilon contributes to ethanol-induced steatosis. Accordingly, the effect of acute ethanol on indices of hepatic steatosis and insulin signaling were determined in PKCepsilon knockout mice and in wild-type mice that received an anti-sense oligonucleotide (ASO) to knockdown PKCepsilon expression. Acute ethanol (6g/kg i.g.) caused a robust increase in hepatic non-esterified free fatty acids (NEFA), which peaked 1h after ethanol exposure. This increase in NEFA was followed by elevated diacylglycerols (DAG), as well as by the concomitant activation of PKCepsilon. Acute ethanol also changed the expression of insulin-responsive genes (i.e. increased G6Pase, downregulated GK), in a pattern indicative of impaired insulin signaling. Acute ethanol exposure subsequently caused a robust increase in hepatic triglycerides. The accumulation of triglycerides caused by ethanol was blunted in ASO-treated or in PKCepsilon(-/-) mice. Taken together, these data suggest that the increase in NEFA caused by hepatic ethanol metabolism leads to an increase in DAG production via the triacylglycerol pathway. DAG then subsequently activates PKCepsilon, which then exacerbates hepatic lipid accumulation by inducing insulin resistance. These data also suggest that PKCepsilon plays a causal role in at least the early phases of ethanol-induced liver injury.


Assuntos
Etanol/toxicidade , Fígado Gorduroso/induzido quimicamente , Hepatopatias Alcoólicas/enzimologia , Proteína Quinase C-épsilon/metabolismo , Actinas/genética , Animais , Primers do DNA , Fígado Gorduroso/enzimologia , Glucoquinase/genética , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso , Proteína Quinase C-épsilon/deficiência , Proteína Quinase C-épsilon/genética , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/metabolismo
13.
PLoS One ; 14(9): e0222267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553748

RESUMO

Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Citotoxinas/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Humanos , Melanócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
J Pharmacol Exp Ther ; 325(3): 801-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18339969

RESUMO

Studies in rodents suggest that the adipocytokine resistin causes insulin resistance via impairing normal insulin signaling. However, in humans, resistin may play a more important role in inflammation than in insulin resistance. Whether resistin contributes to inflammation in rodents is unclear. Therefore, the purpose of the present study was to determine the effect of resistin exposure on the basal and stimulated [lipopolysaccharide (LPS)] inflammatory response in mouse liver in vivo. Resistin alone had no major effects on hepatic expression of insulin-responsive genes, either in the presence or absence of LPS. Although it had no effect alone, resistin significantly enhanced hepatic inflammation and necrosis caused by LPS. Resistin increased expression of proinflammatory genes, e.g., plasminogen activator inhibitor (PAI)-1, and activity of mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase 1/2, caused by LPS, but had little effect on anti-inflammatory gene expression. Resistin also enhanced fibrin deposition (an index of hemostasis) caused by LPS. The increase in PAI-1 expression, fibrin deposition, and liver damage caused by LPS + resistin was almost completely prevented either by inhibiting the coagulation cascade, hirudin, or by blocking MAP kinase signaling, U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene], indicating that these pathways play a causal role in observed enhanced liver damage caused by resistin. Taken together, the augmentation of LPS-induced liver damage caused by resistin seems to involve, at least in part, up-regulation of hepatic inflammation via mechanisms most likely involving the coagulation cascade and fibrin accumulation. These data also suggest that resistin may have proinflammatory roles in mouse liver independent of its effects on insulin signaling, analogous to previous work in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Resistina/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Glicemia/análise , Fibrina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Insulina/sangue , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Resistina/sangue , Resistina/farmacocinética , Fator de Necrose Tumoral alfa/genética
15.
FEBS Lett ; 580(7): 1859-64, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16516204

RESUMO

Activation of ErbB receptor tyrosine kinases triggers multiple signaling pathways that regulate cellular proliferation and survival. We here demonstrate that ErbB2 is activated via the epidermal growth factor receptor (EGFR) upon exposure of cultured human keratinocytes to 2-methyl-1,4-naphthoquinone (menadione). Both ErbB2 and EGFR are shown to be regulated by protein tyrosine phosphatases that are inhibited by menadione, giving rise to the hypothesis that phosphatase inhibition by menadione may result in a net activation of EGFR and an enhanced ErbB2 phosphorylation. Isolated PTP-1B, a protein tyrosine phosphatase known to be associated with ErbB receptors, is demonstrated to be inhibited by menadione.


Assuntos
Receptores ErbB/fisiologia , Queratinócitos/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Receptor ErbB-2/metabolismo , Vitamina K 3/farmacologia , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/antagonistas & inibidores
16.
Free Radic Biol Med ; 41(9): 1478-87, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17023275

RESUMO

Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) have been proposed to be activated in cells exposed to ultraviolet A (UVA) radiation (320-400 nm) and to be involved in photocarcinogenesis. Singlet oxygen and hydrogen peroxide are being discussed as mediators of the activation of signal transduction pathways by UVA. It is demonstrated here that EGFR is not activated in cells exposed to UVA in the absence of extracellular photosensitizers. Rather, UVA was capable of activating the EGFR and the related ErbB2 receptor tyrosine kinase in HeLa cells and human keratinocytes only under conditions that allowed for the extracellular photochemical generation of H(2)O(2), such as when cells were covered with cell culture medium during exposure to UVA. Pretreatment of cells with vanadate was required for UVA-induced EGFR activation, pointing to the involvement of protein tyrosine phosphatases. Unlike H(2)O(2), photochemically generated singlet oxygen did not activate EGFR but instead impaired the activation of EGFR by its ligand, EGF. In summary, extracellularly generated H(2)O(2) mediates UVA-induced activation of the EGFR and of ErbB2, whereas intracellular generation of reactive oxygen species upon exposure of cells to UVA is not sufficient for activation of the receptor.


Assuntos
Receptores ErbB/metabolismo , Peróxido de Hidrogênio/metabolismo , Raios Ultravioleta , Células Cultivadas , Receptores ErbB/efeitos da radiação , Células HeLa , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Oxidantes/metabolismo , Fosforilação/efeitos da radiação , Transtornos de Fotossensibilidade , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2 , Transdução de Sinais , Oxigênio Singlete/metabolismo
17.
Cancer Res ; 62(17): 4922-8, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12208742

RESUMO

2-Methyl-1,4-naphthoquinone, vitamin K(3) (menadione), which is frequently used as a model quinone in cell culture and in vivo studies, was tested for its effects on gap-junctional intercellular communication (GJC). Exposure of WB-F344 rat liver epithelial cells to menadione (50-100 micro M) led to a 50-75% decrease in GJIC. Different from the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, menadione did not induce internalization of gap junctions. Rather, the decreased GJIC was found to be because of phosphorylation of connexin 43, the major connexin in the used cell line, which was mediated by MAPK/ERK kinase (MEK) 1 and MEK 2 as well as by activation of their direct substrates, extracellular signal-regulated kinase (ERK) 1 and ERK 2. Activation of ERK 1/2 was demonstrated to be independent of NAD(P)H:quinone oxidoreductase using the inhibitor dicoumarol, thus excluding redox cycling as the major mechanism causing these menadione effects. A substantial increase in tyrosine phosphorylation was detected in the cell membrane immunocytochemically upon exposure to menadione, consistent with arylation by menadione bearing the responsibility for the signaling events induced and consistent with the fact that protein tyrosine phosphatases are known targets of arylation reactions. ERK activation was attenuated using specific inhibitors of the epidermal growth factor receptor tyrosine kinase. Similarly, these inhibitors as well as inhibitors of MEK 1/2 counteracted the loss in gap-junctional communication elicited by menadione. This is of interest for chemotherapeutic approaches exploiting the bystander-effect, which is based upon intact GJIC.


Assuntos
Comunicação Celular/efeitos dos fármacos , Receptores ErbB/fisiologia , Junções Comunicantes/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Vitamina K 3/farmacologia , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Conexina 43/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Junções Comunicantes/enzimologia , Junções Comunicantes/fisiologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Endogâmicos F344
18.
Redox Biol ; 4: 1-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25479549

RESUMO

Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles.


Assuntos
Cério/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cério/efeitos adversos , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/toxicidade , Neoplasias Cutâneas/patologia
19.
Free Radic Res ; 38(7): 729-37, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15453638

RESUMO

Singlet oxygen, an electronically excited form of molecular oxygen, is a primary mediator of the activation of stress-activated protein kinases elicited by ultraviolet A (UVA; 320-400 nm). Here, the effects of singlet oxygen (1O2) on the extracellular signal-regulated kinase (ERK) 1/2 and Akt/protein kinase B pathways were analyzed in human dermal fibroblasts. While basal ERK 1/2 phosphorylation was lowered in cells exposed to either 1O2, UVA or photodynamic treatment, Akt was moderately activated by photochemically generated 1O2 in a phosphoinositide 3-kinase (PI3K)-dependent fashion, resulting in the phosphorylation of glycogen synthase kinase-3 (GSK3). The activation of ERK 1/2 and Akt as induced by stimulation with epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) was inhibited by 1O2 generated intracellularly upon photoexcitation of rose Bengal (RB). Photodynamic therapy (PDT)-induced apoptosis is known to be associated with increased formation of ceramides. Likewise, both 1O2 and UVA induced ceramide generation in human skin fibroblasts. The attenuation of EGF- and PDGF-induced activation of ERK 1/2 and Akt by 1O2 was mimicked by stimulation of fibroblasts with the cell-permeable C2-ceramide. Interestingly, EGF-induced tyrosine phosphorylation of the EGF receptor was strongly attenuated by 1O2 but unimpaired by C2-ceramide, implying that, although ceramide formation may mediate the above attenuation of ERK and Akt phosphorylation induced by 1O2, mechanisms beyond ceramide formation exist that mediate impairment of growth factor signaling by singlet oxygen. In summary, these data point to a novel mechanism of 1O2 toxicity: the known 1O2-induced activation of proapoptotic kinases such as JNK and p38 is paralleled by the prevention of activation of growth factor receptor-dependent signaling and of anti-apoptotic kinases, thus shifting the balance towards apoptosis.


Assuntos
Ceramidas/metabolismo , Substâncias de Crescimento/farmacologia , Transdução de Sinais/efeitos dos fármacos , Oxigênio Singlete/farmacologia , Células Cultivadas , Ceramidas/biossíntese , Ceramidas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfotirosina/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Antioxid Redox Signal ; 19(8): 765-78, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23198807

RESUMO

AIMS: Melanoma is the most aggressive type of malignant skin cancer derived from uncontrolled proliferation of melanocytes. Melanoma cells possess a high potential to metastasize, and the prognosis for advanced melanoma is rather poor due to its strong resistance to conventional chemotherapeutics. Nanomaterials are at the cutting edge of the rapidly developing area of nanomedicine. The potential of nanoparticles for use as carrier in cancer drug delivery is infinite with novel applications constantly being tested. The noncarrier use of cerium oxide nanoparticles (CNPs) is a novel and promising approach, as those particles per se show an anticancer activity via their oxygen vacancy-mediated chemical reactivity. RESULTS: In this study, the question was addressed of whether the use of CNPs might be a valuable tool to counteract the invasive capacity and metastasis of melanoma cells in the future. Therefore, the effect of those nanoparticles on human melanoma cells was investigated in vitro and in vivo. Concentrations of polymer-coated CNPs being nontoxic for stromal cells showed a cytotoxic, proapoptotic, and anti-invasive capacity on melanoma cells. In vivo xenograft studies with immunodeficient nude mice showed a decrease of tumor weight and volume after treatment with CNPs. INNOVATION: In summary, the redox-active CNPs have selective pro-oxidative and antioxidative properties, and this study is the first to show that CNPs prevent tumor growth in vivo. CONCLUSION: The application of redox-active CNPs may form the basis of new paradigms in the treatment and prevention of cancers.


Assuntos
Antineoplásicos/farmacologia , Cério/farmacologia , Melanoma/tratamento farmacológico , Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cério/administração & dosagem , Cério/química , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Melanoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Oxirredução , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA