Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Cell ; 184(24): 5950-5969.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34741801

RESUMO

The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.


Assuntos
Autofagossomos/virologia , COVID-19/virologia , Autofagia , COVID-19/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Endossomos/fisiologia , Endossomos/virologia , Complexo de Golgi/fisiologia , Células HEK293 , Células HeLa , Humanos , Fusão de Membrana , Microscopia Confocal , Fagossomos/metabolismo , Fagossomos/virologia , Proteínas Qa-SNARE/biossíntese , Receptores sigma/biossíntese , SARS-CoV-2 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sinaptotagminas/biossíntese , Receptor Sigma-1
2.
Mol Cell ; 84(15): 2966-2983.e9, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39089251

RESUMO

Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.


Assuntos
Proteínas Relacionadas à Autofagia , ATPases Vacuolares Próton-Translocadoras , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Animais , Camundongos , Ligação Proteica , Neurônios/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Autofagia , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Influenza Humana/virologia , Influenza Humana/metabolismo , Influenza Humana/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Knockout
3.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34363750

RESUMO

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Assuntos
Autofagia/fisiologia , Células Endoteliais/fisiologia , Infiltração de Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Animais , Quimiotaxia de Leucócito/fisiologia , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Junções Intercelulares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia
4.
EMBO J ; 40(6): e105543, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586810

RESUMO

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Vírus da Influenza A/patogenicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Infecções por Orthomyxoviridae/genética , Deleção de Sequência , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Animais , Autofagia , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Embrião de Galinha , Citocinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Domínios Proteicos , Replicação Viral
5.
EMBO Rep ; 23(1): e53429, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34704340

RESUMO

Selective autophagy of damaged organelles is important to maintain cellular homeostasis. The mechanisms how autophagy selects specific targets is often poorly understood. Rabaptin5 was previously known as a major regulator of early endosome identity and maturation. Here, we identify two novel Rabaptin5 interactors: FIP200, a subunit of the ULK1 autophagy initiator complex, and ATG16L1, a central component of the E3-like enzyme in LC3 lipidation. Autophagy of early endosomes damaged by chloroquine or monensin treatment requires Rabaptin5 and particularly a short sequence motif that binds to the WD domain of ATG16L1. Rabaptin5 and its interaction with ATG16L1 further contributes to the autophagic elimination of Salmonella enterica early after infection, when it resides in phagosomes with early endosomal characteristics. Our results demonstrate a novel function of Rabaptin5 in quality control of early endosomes in the selective targeting of autophagy to damaged early endosomes and phagosomes.


Assuntos
Proteínas Relacionadas à Autofagia , Endossomos , Vacúolos , Proteínas de Transporte Vesicular , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Endossomos/metabolismo , Fagossomos/metabolismo , Salmonella , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Fish Shellfish Immunol ; 148: 109483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458501

RESUMO

The precise control of interferon (IFN) production is indispensable for the host to eliminate invading viruses and maintain a homeostatic state. In mammals, stimulator of interferon genes (STING) is a prominent adaptor involved in antiviral immune signaling pathways. However, the regulatory mechanism of piscine STING has not been thoroughly investigated. Here, we report that autophagy related 16 like 1 (bcATG16L1) of black carp (Mylopharyngodon piceus) is a negative regulator in black carp STING (bcSTING)-mediated signaling pathway. Initially, we substantiated that knockdown of bcATG16L1 increased the transcription of IFN and ISGs and enhanced the antiviral activity of the host cells. Subsequently, we identified that bcATG16L1 inhibited the bcSTING-mediated IFN promoter activation and proved that bcATG16L1 suppressed bcSTING-mediated antiviral ability. Furthermore, we revealed that bcATG16L1 interacted with bcSTING and the two proteins shared a similar subcellular distribution. Mechanically, we found that bcATG16L1 attenuated the oligomerization of bcSTING, which was a key step for bcSTING activation. Taken together, our results indicate that bcATG16L1 interacts with bcSTING, dampens the oligomerization of bcSTING, and negatively regulates bcSTING-mediated antiviral activity.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Rhabdoviridae/fisiologia , Reoviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes , Imunidade Inata/genética , Interferons , Mamíferos/metabolismo
7.
Microbiol Immunol ; 68(2): 47-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991129

RESUMO

Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/complicações , Vírus da Hepatite B , Neoplasias Hepáticas/genética , Genótipo , Frequência do Gene , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Hepatite B/complicações , Hepatite B/genética , China , Estudos de Casos e Controles , Proteína 5 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética
8.
Mol Biol Rep ; 51(1): 231, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281293

RESUMO

BACKGROUND: In India, esophageal cancer (EC) is among the major cause of cancer-related deaths in both sexes. In recent past, autophagy has emerged as one of the crucial process associated with cancer. In the development of EC, the role of autophagy and the precise molecular mechanism involved has yet to be fully understood. Recently, a small number of studies have proposed how variations in autophagy genes affect the growth and development of EC. Micro-RNA's are also known to play a critical role in the development of EC. Here, we examined the relationship between the risk of EC and two single-nucleotide polymorphisms (SNPs) in the key autophagy genes, ATG10 rs1864183 and ATG16L1 rs2241880. We also analyzed the association of miR-107 and miR-126 with EC as these miRNA's are associated with autophagy. METHODS AND RESULTS: A total of 230 EC patients and 230 healthy controls from North-west Indian population were enrolled. ATG10 rs1864183 and ATG16L1 rs2241880 polymorphism were analyzed using TaqMan genotyping assay. Expression levels of miR-107 and miR-126 were analyzed through quantitative PCR using SYBR green chemistry. We found significant association of CT + CC genotype (OR 0.64, p = 0.022) in recessive model for ATG10 rs1864183 polymorphism with decreased EC risk. For ATG16L1 rs2241880 polymorphism significant association for AG genotype (OR 1.48, p = 0.05) and G allele (OR 1.43, p = 0.025) was observed for increased EC risk. Expression levels of miR-126 were also found to be significantly up regulated (p = 0.008). CONCLUSION: Our results suggest that ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 may be associated with esophageal carcinogenesis and warrant further investigation.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Masculino , Feminino , Humanos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Neoplasias Esofágicas/genética , MicroRNAs/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Estudos de Casos e Controles , Proteínas de Transporte Vesicular/genética
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674078

RESUMO

Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas de Ligação a Fosfato , Repetições WD40 , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Humanos , Repetições WD40/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Lisossomos/metabolismo , Células HEK293 , Células HeLa
10.
J Clin Biochem Nutr ; 74(2): 146-153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510686

RESUMO

Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular sensor for muramyl dipeptide (MDP), a degradation product of bacterial cell wall peptidoglycan (PGN). PGN stimulates cell-surface Toll-like receptor 2 (TLR2) independently of NOD2, indicating the presence of crosstalk between extracellular TLR2 and intracellular NOD2 upon exposure to PGN. NOD2-deficient mice were sensitive, while TLR2-deficient mice were resistant to experimental colitis induced by intrarectal administration of PGN. Severe colitis in NOD2-deficient mice was accompanied by increased expression of nuclear factor-kappa B-dependent cytokines and decreased expression of autophagy-related 16-like 1 (ATG16L1). MDP activation of NOD2 enhanced autophagy mediated by TLR2 in human dendritic cells. mRNA expression of TLR2 tended to be higher in the colonic mucosa of patients with active ulcerative colitis compared to that of those in remission. Induction of remission was associated with increased mRNA expression of ATG16L1 in both ulcerative colitis and Crohn's disease patients. Conversely, mRNA expression of receptor-interacting serine/threonine-protein kinase 2 was higher in the inflammatory colonic mucosa of patients with active disease than in the non-inflamed mucosa of patients in remission, in both ulcerative colitis and Crohn's disease. These findings highlight the role of NOD2-TLR2 crosstalk in the immunopathogenesis of colitis.

11.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30936093

RESUMO

Membrane targeting of autophagy-related complexes is an important step that regulates their activities and prevents their aberrant engagement on non-autophagic membranes. ATG16L1 is a core autophagy protein implicated at distinct phases of autophagosome biogenesis. In this study, we dissected the recruitment of ATG16L1 to the pre-autophagosomal structure (PAS) and showed that it requires sequences within its coiled-coil domain (CCD) dispensable for homodimerisation. Structural and mutational analyses identified conserved residues within the CCD of ATG16L1 that mediate direct binding to phosphoinositides, including phosphatidylinositol 3-phosphate (PI3P). Mutating putative lipid binding residues abrogated the localisation of ATG16L1 to the PAS and inhibited LC3 lipidation. On the other hand, enhancing lipid binding of ATG16L1 by mutating negatively charged residues adjacent to the lipid binding motif also resulted in autophagy inhibition, suggesting that regulated recruitment of ATG16L1 to the PAS is required for its autophagic activity. Overall, our findings indicate that ATG16L1 harbours an intrinsic ability to bind lipids that plays an essential role during LC3 lipidation and autophagosome maturation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
12.
Fish Shellfish Immunol ; 136: 108706, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965610

RESUMO

Autophagy related 16 like 1 (ATG16L1) is a crucial component of autophagy that regulates the formation of the autophagosome. In mammals, ATG16L1 also performs important roles in immunity, including controlling viral replication and regulating innate immune signaling; however, investigation on the role of piscine ATG16L1 in immunity is rare. In this report, the ATG16L1 homolog of black carp Mylopharyngodon piceus (bcATG16L1) was cloned and identified, and its negative regulatory role in mitochondrial antiviral signaling protein (MAVS)-mediated antiviral signaling was described. The coding region of bcATG16L1 consists of 1830 nucleotides and encodes 609 amino acids, including one coiled-coil domain at the N-terminus, three low complexity region domains in the middle, and seven WD40 domains at the C-terminus. By immunofluorescence assay and immunoblotting, we found that bcATG16L1 is a cytosolic protein with a molecular weight of ∼74 kDa. In addition, over-expression of bcATG16L1 suppressed bcMAVS-mediated bcIFNa and DrIFNφ1 promoters transcriptional activity and inhibited bcMAVS-mediated antiviral activity. We further confirmed the co-localization of bcATG16L1 and bcMAVS by immunofluorescence assay and verified the protein interaction between bcATG16L1 and bcMAVS by immunoprecipitation assay. Our results report for the first time that black carp ATG16L1 suppresses MAVS-mediated antiviral signaling in teleost fish.


Assuntos
Carpas , Doenças dos Peixes , Reoviridae , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Carpas/genética , Carpas/metabolismo , Rhabdoviridae/fisiologia , Reoviridae/fisiologia , Sequência de Aminoácidos , Imunidade Inata/genética , Proteínas de Peixes , Antivirais , Mamíferos/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(43): 26784-26794, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055216

RESUMO

The obligate intracellular bacteria Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted diseases, multiply in a vacuolar compartment, the inclusion. From this niche, they secrete "effector" proteins, that modify cellular activities to enable bacterial survival and proliferation. Here, we show that the host autophagy-related protein 16-1 (ATG16L1) restricts inclusion growth and that this effect is counteracted by the secretion of the bacterial effector CT622/TaiP (translocated ATG16L1 interacting protein). ATG16L1 is mostly known for its role in the lipidation of the human homologs of ATG8 (i.e., LC3 and homologs) on double membranes during autophagy as well as on single membranes during LC3-associated phagocytosis and other LC3-lipidation events. Unexpectedly, the LC3-lipidation-related functions of ATG16L1 are not required for restricting inclusion development. We show that the carboxyl-terminal domain of TaiP exposes a mimic of an eukaryotic ATG16L1-binding motif that binds to ATG16L1's WD40 domain. By doing so, TaiP prevents ATG16L1 interaction with the integral membrane protein TMEM59 and allows the rerouting of Rab6-positive compartments toward the inclusion. The discovery that one bacterial effector evolved to target ATG16L1's engagement in intracellular traffic rather than in LC3 lipidation brings this "secondary" activity of ATG16L1 in full light and emphasizes its importance for maintaining host cell homeostasis.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Chlamydia trachomatis/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Bactérias/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas rab de Ligação ao GTP/metabolismo
14.
Mol Cancer ; 21(1): 109, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524319

RESUMO

BACKGROUND: Emerging evidence suggest the critical role of circular RNAs (circRNAs) in disease development especially in various cancers. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) is still largely unknown. METHODS: RNA sequencing was performed to identify significantly upregulated circRNAs in paired HCC tissues and non-tumor tissues. CCK-8 assay, colony formation, transwell, and xenograft mouse models were used to investigate the role of circRNAs in HCC proliferation and metastasis. Small interfering RNA (siRNA) was used to silence gene expression. RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assay and western blot were used to explore the underlying molecular mechanisms. RESULTS: Hsa_circ_0095868, derived from exon 5 of the MDK gene (named circMDK), was identified as a new oncogenic circRNA that was significantly upregulated in HCC. The upregulation of circMDK was associated with the modification of N6-methyladenosine (m6A) and poor survival in HCC patients. Mechanistically, circMDK sponged miR-346 and miR-874-3p to upregulate ATG16L1 (Autophagy Related 16 Like 1), resulting to the activation of PI3K/AKT/mTOR signaling pathway to promote cell proliferation, migration and invasion. Poly (ß-amino esters) (PAEs) were synthesized to assist the delivery of circMDK siRNA (PAE-siRNA), which effectively inhibited tumor progression without obvious adverse effects in four liver tumor models including subcutaneous, metastatic, orthotopic and patient-derived xenograft (PDX) models. CONCLUSIONS: CircMDK could serve as a potential tumor biomarker that promotes the progression of HCC via the miR-346/874-3p-ATG16L1 axis. The PAE-based delivery of siRNA improved the stability and efficiency of siRNA targeting circMDK. The PAE-siRNA nanoparticles effectively inhibited HCC proliferation and metastasis in vivo. Our current findings offer a promising nanotherapeutic strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Regulação para Cima
15.
EMBO J ; 37(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29317426

RESUMO

A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat-containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically, we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Transporte/fisiologia , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Repetições WD40 , Animais , Apresentação de Antígeno , Proteínas Relacionadas à Autofagia/genética , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Dendríticas/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
16.
J Cell Sci ; 133(20)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127840

RESUMO

Autophagy requires the formation of membrane vesicles, known as autophagosomes, that engulf cellular cargoes and subsequently recruit lysosomal hydrolases for the degradation of their contents. A number of autophagy-related proteins act to mediate the de novo biogenesis of autophagosomes and vesicular trafficking events that are required for autophagy. Of these proteins, ATG16L1 is a key player that has important functions at various stages of autophagy. Numerous recent studies have begun to unravel novel activities of ATG16L1, including interactions with proteins and lipids, and how these mediate its role during autophagy and autophagy-related processes. Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes. These recent findings, as well as the historical discovery of ATG16L1, pathological relevance, unresolved questions and contradictory observations, will be discussed here.


Assuntos
Autofagossomos , Autofagia , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Lisossomos
17.
Cell Tissue Res ; 389(1): 99-114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35503135

RESUMO

Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.


Assuntos
Vesículas Extracelulares , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Apoptose , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Ratos , Transdução de Sinais , Proteínas de Transporte Vesicular
18.
Int Immunol ; 33(2): 91-105, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32909611

RESUMO

Polymorphisms in the autophagy-related protein 16 like 1 (ATG16L1) and nucleotide-binding oligomerization domain 2 (NOD2) genes are associated with Crohn's disease (CD). Impaired interaction between ATG16L1 and NOD2 underlies CD immunopathogenesis. Although activation of the receptor-interacting serine-threonine kinase (RICK, also known as RIP2), a downstream signaling molecule for NOD2 and multiple toll-like receptors (TLRs), plays a pathogenic role in the development of inflammatory bowel disease, the molecular interaction between ATG16L1 and RICK/RIP2 remains poorly understood. In this study, we examined the physical interaction between ATG16L1 and RICK/RIP2 in human embryonic kidney 293 cells and human monocyte-derived dendritic cells (DCs) expressing excessive and endogenous levels of these proteins, respectively. We established that ATG16L1 binds to RICK/RIP2 kinase domain and negatively regulates TLR2-mediated nuclear factor-kappa B (NF-κB) activation and pro-inflammatory cytokine responses by inhibiting the interaction between TLR2 and RICK/RIP2. Binding of ATG16L1 to RICK/RIP2 suppressed NF-κB activation by down-regulating RICK/RIP2 polyubiquitination. Notably, the percentage of colonic DCs expressing ATG16L1 inversely correlated with IL-6 and TNF-α expression levels in the colon of CD patients. These data suggest that the interaction between ATG16L1 and RICK/RIP2 maintains intestinal homeostasis via the down-regulation of TLR-mediated pro-inflammatory cytokine responses.

19.
BMC Cancer ; 22(1): 146, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123435

RESUMO

BACKGROUND: Glioblastoma is the most aggressive and common malignant primary brain tumor in adults. Many genetic, epigenetic and genomic mutations have been identified in this tumor, but no driving cause has been identified yet for glioblastoma pathogenesis. Autophagy has proved to be deregulated in different diseases such as cancer where it has a dual role, acting as a tumor suppression mechanism during the first steps of tumor development and promoting cancer cells survival in stablished tumors. METHODS: Here, we aimed to assess the potential association between several candidate polymorphisms in autophagy genes (ATG2B rs3759601, ATG16L1 rs2241880, ATG10 rs1864183, ATG5 rs2245214, NOD2 rs2066844 and rs2066845) and glioblastoma susceptibility. RESULTS: Our results showed a significant correlation between ATG2B rs3759601, ATG10 rs1864183 and NOD2 rs2066844 variants and higher risk to suffer glioblastoma. In addition, the relationship between the different clinical features listed in glioblastoma patients and candidate gene polymorphisms was also investigated, finding that ATG10 rs1864183 might be a promising prognosis factor for this tumor. CONCLUSIONS: This is the first report evaluating the role of different variants in autophagy genes in modulating glioblastoma risk and our results emphasize the importance of autophagy in glioblastoma development.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Neoplasias Encefálicas/genética , Predisposição Genética para Doença/genética , Glioblastoma/genética , Polimorfismo Genético/genética , Adulto , Idoso , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/genética , Espanha , Proteínas de Transporte Vesicular/genética , Adulto Jovem
20.
Cell Biochem Funct ; 40(7): 650-667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36062813

RESUMO

Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Proteína 12 Relacionada à Autofagia/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Ligases , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA