Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.987
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32497502

RESUMO

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Pirróis/metabolismo , Pirróis/farmacologia , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Animais , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Ácido Fólico/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Ovariectomia , Proteômica , Pseudomonas aeruginosa/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652481

RESUMO

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Assuntos
Acinetobacter baumannii , Infecções Urinárias , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções Urinárias/microbiologia , Catéteres , Acinetobacter baumannii/genética , Fibrinogênio/metabolismo
3.
Mol Microbiol ; 121(2): 196-212, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918886

RESUMO

Infections caused by Acinetobacter baumannii, a Gram-negative opportunistic pathogen, are difficult to eradicate due to the bacterium's propensity to quickly gain antibiotic resistances and form biofilms, a protective bacterial multicellular community. The A. baumannii DNA damage response (DDR) mediates the antibiotic resistance acquisition and regulates RecA in an atypical fashion; both RecALow and RecAHigh cell types are formed in response to DNA damage. The findings of this study demonstrate that the levels of RecA can influence formation and dispersal of biofilms. RecA loss results in surface attachment and prominent biofilms, while elevated RecA leads to diminished attachment and dispersal. These findings suggest that the challenge to treat A. baumannii infections may be explained by the induction of the DDR, common during infection, as well as the delicate balance between maintaining biofilms in low RecA cells and promoting mutagenesis and dispersal in high RecA cells. This study underscores the importance of understanding the fundamental biology of bacteria to develop more effective treatments for infections.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Dano ao DNA , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla
4.
Mol Microbiol ; 121(5): 833-849, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308563

RESUMO

The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.


Assuntos
Acinetobacter baumannii , Aderência Bacteriana , Proteínas de Bactérias , Biofilmes , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ácido Vanílico , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Óperon , Sítios de Ligação , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia
5.
Eur J Immunol ; : e2451170, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072714

RESUMO

Acinetobacter baumannii is an opportunistic Gram-negative bacterium representing one of the leading causes of ventilator-associated pneumonia. The development of pneumonia results from a complex interplay between pathogens and pulmonary innate mucosal immunity. Therefore, the knowledge of the host immune responses is pivotal for the development of effective therapeutics to treat A. baumannii infections. Previous studies were conducted using cell lines and animal models, but a comprehensive understanding of the interaction between A. baumannii and primary human immune cells is still lacking. To bridge this gap, we investigated the response of primary monocytes, macrophages, and dendritic cells to the A. baumannii-type strain and an epidemic clinical isolate. We found that all immune cells trigger different responses when interacting with A. baumannii. In particular, macrophages and monocytes mediate bacterial clearance, whereas monocytes and dendritic cells activate a late response through the production of cytokines, chemokines, and the expression of co-stimulatory molecules. The epidemic strain induces lower expression of interleukin-10 and CD80 compared with the type strain, potentially constituting two immune evasion strategies.

6.
J Virol ; 98(7): e0046724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38864621

RESUMO

Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Carbapenêmicos , Modelos Animais de Doenças , Terapia por Fagos , Acinetobacter baumannii/virologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Infecções por Acinetobacter/terapia , Infecções por Acinetobacter/microbiologia , Ratos , Terapia por Fagos/métodos , Carbapenêmicos/farmacologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Masculino , Genoma Viral , Águas Residuárias , Pneumonia/terapia , Pneumonia/microbiologia , Pneumonia/virologia
7.
Drug Resist Updat ; 73: 101061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301486

RESUMO

AIMS: Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS: Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS: Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS: Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
8.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099298

RESUMO

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Farmacorresistência Bacteriana , Furanos , Deleção de Genes , Lipoproteínas , Inibidores de Proteases , Piridinas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Furanos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sinais Direcionadores de Proteínas/genética , Piridinas/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363566

RESUMO

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Assuntos
Acinetobacter baumannii , Sequências Hélice-Alça-Hélice , Manitol , Desidrogenase do Álcool de Açúcar , Acinetobacter baumannii/enzimologia , Manitol/metabolismo , Pressão Osmótica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estresse Salino , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36512492

RESUMO

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Assuntos
Acinetobacter baumannii , Humanos , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Testes de Sensibilidade Microbiana , Meropeném , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Proc Natl Acad Sci U S A ; 119(41): e2209838119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191190

RESUMO

Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.


Assuntos
Acinetobacter baumannii , Proteínas de Escherichia coli , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Monofosfato , Fatores de Alongamento de Peptídeos , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Virulência
12.
J Bacteriol ; 206(1): e0021723, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37850798

RESUMO

Multidrug efflux is one of the major mechanisms of antibiotic resistance identified in clinical isolates of the human pathogen Acinetobacter baumannii. The multiple antibiotic resistance in this species is often enabled by the overproduction of the tripartite efflux pump AdeABC. In this pump, AdeB is the inner membrane transporter from the resistance-nodulation-division (RND) superfamily of proteins, which is responsible for the recognition and efflux of multiple structurally unrelated compounds. Like other RND transporters, AdeB is a trimeric protein with ligand-binding sites located in the large periplasmic domains. Previous structural studies, however, highlighted the uniqueness of AdeB interactions with ligands. Up to three ligand molecules were bound to one protomer of AdeB, mapping its substrate translocation path. In this study, we introduced single and double substitutions in the identified ligand-binding sites of AdeB. Our results show that the mechanism of substrate translocation by AdeB is different from that of other characterized RND transporters and that the functional interactions between the sites are nonadditive. We identified AdeB mutants with both the loss and the gain of antibiotic susceptibility phenotypes, as well as AdeB mutations making A. baumannii cells overproducing such pump variants even more susceptible to multiple antibiotics than efflux-deficient cells. IMPORTANCE Multidrug efflux pumps of the resistance-nodulation-division superfamily of proteins are important contributors to various aspects of bacterial physiology and antibiotic resistance. Studies of the best-characterized model transporter AcrB from Escherichia coli suggested that these transporters operate by a functional rotation mechanism in which various substrates bind to at least two different binding sites. This study suggests that the mechanism of AdeB is distinct and that the binding sites in this transporter are functionally linked.


Assuntos
Acinetobacter baumannii , Proteínas de Escherichia coli , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Ligantes , Antibacterianos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Escherichia coli/metabolismo
13.
J Bacteriol ; 206(5): e0043523, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661375

RESUMO

Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Etanolaminas , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Antibacterianos/farmacologia , Metais/metabolismo , Metais/farmacologia , Fatores de Transcrição
14.
J Bacteriol ; 206(1): e0040323, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084964

RESUMO

In a recent study by Inga V. Leus, Sean R. Roberts, Anhthu Trinh, Edward W. Yu, and Helen I. Zgurskaya (J Bacteriol, 2023, https://doi.org/10.1128/jb.00217-23), it was found that the clinically relevant resistance-nodulation-cell division (RND)-type AdeABC antibiotic efflux pump from Acinetobacter baumannii exhibits close communication between its antibiotic binding sites. Alterations in one of them can have far-reaching impacts on the drug translocation pathway. These insights could reshape our understanding of RND-type efflux pump mechanisms.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Divisão Celular , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
15.
J Bacteriol ; 206(6): e0043223, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727225

RESUMO

The DNA damage response of the multi-drug-resistant nosocomial pathogen Acinetobacter baumannii possesses multiple features that distinguish it from the commonly used LexA repression system. These include the absence of LexA in this genus, the evolution of a UmuD polymerase manager into the UmuDAb repressor of error-prone polymerases, the use of a corepressor unique to Acinetobacter (DdrR), and an unusually large UmuDAb binding site. We defined cis- and trans-acting factors required for UmuDAb DNA binding and gene repression, and tested whether DdrR directly enhances its DNA binding. We used DNA binding assays to characterize UmuDAb's binding to its proposed operator present upstream of the six co-repressed umuDC or umuC genes. UmuDAb bound tightly and cooperatively to this site with ~10-fold less affinity than LexA. DdrR enhanced the binding of both native and dimerization-deficient UmuDAb forms, but only in greater than equimolar ratios relative to UmuDAb. UmuDAb mutants unable to dimerize or effect gene repression showed impaired DNA binding, and a strain expressing the G124D dimerization mutant could not repress transcription of the UmuDAb-DdrR regulon. Competition electrophoretic mobility shift assays conducted with mutated operator probes showed that, unlike typical SOS boxes, the UmuDAb operator possessed a five-base pair central core whose sequence was more crucial for binding than the flanking palindrome. The presence of only one of the two flanking arms of the palindrome was necessary for UmuDAb binding. Overall, the data supported a model of an operator with two UmuDAb binding sites. The distinct characteristics of UmuDAb and its regulated promoters differ from the typical LexA repression model, demonstrating a novel method of repression.IMPORTANCEAcinetobacter baumannii is a gram-negative bacterium responsible for hospital-acquired infections. Its unique DNA damage response can activate multiple error-prone polymerase genes, allowing it to gain mutations that can increase its virulence and antibiotic resistance. The emergence of infectious strains carrying multiple antibiotic resistance genes, including carbapenem resistance, lends urgency to discovering and developing ways to combat infections resistant to treatment with known antibiotics. Deciphering how the regulators UmuDAb and DdrR repress the error-prone polymerases could lead to developing complementary treatments to halt this mechanism of generating resistance.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Resposta SOS em Genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ligação Proteica , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Sítios de Ligação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética
16.
J Proteome Res ; 23(7): 2474-2494, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850255

RESUMO

Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.


Assuntos
Acinetobacter baumannii , Glicoproteínas , Polissacarídeos , Proteômica , Serina , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/química , Glicosilação , Serina/metabolismo , Serina/química , Proteômica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Polissacarídeos/metabolismo , Polissacarídeos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Cromatografia Líquida
17.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37738153

RESUMO

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Estudos Prospectivos , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
18.
Clin Infect Dis ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630890

RESUMO

BACKGROUND: The treatment of carbapenem-resistant Acinetobacter baumannii/calcoaceticus complex (CRAB) presents significant treatment challenges. METHODS: We report the case of a 42-year-old woman with CRAB meningitis who experienced persistently positive cerebrospinal fluid (CSF) cultures for 13 days despite treatment with high-dose ampicillin-sulbactam and cefiderocol. On day 13, she was transitioned to sulbactam-durlobactam and meropenem; four subsequent CSF cultures remained negative. After 14 days of sulbactam-durlobactam, she was cured of infection. Whole genome sequencing investigations identified putative mechanisms that contributed to reduced cefiderocol susceptibility observed during cefiderocol therapy. Blood and CSF samples were collected pre-dose and 3-hours post initiation of a sulbactam-durlobactam infusion. RESULTS: The CRAB isolate belonged to sequence type 2. An acquired blaOXA-23 and an intrinsic blaOXA-51-like (i.e., blaOXA-66) carbapenemase gene were identified. The paradoxical effect (i.e., no growth at lower cefiderocol dilutions but growth at higher dilutions) was observed by broth microdilution after 8 days of cefiderocol exposure but not by disk diffusion. Potential markers of resistance to cefiderocol included mutations in the start codon of piuA and piuC iron transport genes and a A515V substitution in PBP3, the primary target of cefiderocol. Sulbactam and durlobactam were detected in CSF at both timepoints, indicating CSF penetration. CONCLUSIONS: This case describes successful treatment of refractory CRAB meningitis with the administration of sulbactam-durlobactam and meropenem and highlights the need to be cognizant of the paradoxical effect that can be observed with broth microdilution testing of CRAB isolates with cefiderocol.

19.
BMC Genomics ; 25(1): 727, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060939

RESUMO

BACKGROUND: Acinetobacter baumannii (A. baumannii) is a common opportunistic pathogen in hospitals that causes nosocomial infection. In order to understand the phenotypic and genotypic characteristics of A. baumannii isolates, we sequenced and analyzed 62 A. baumannii isolates from a hospital in Gansu province. RESULTS: Non-repeated 62 A. baumannii isolates were collected from August 2015 to November 2021. Most isolates (56/62) were resistant to multiple drugs. All the 62 A. baumannii isolates were resistant to aztreonam and contained blaADC-25 gene which exists only on chromosome contigs. The 62 isolates in this study were not clustered in a single clade, but were dispersed among multiple clades in the common genome. Seven sequence types were identified by Multilocus sequence type (MLST) analysis and most isolates (52/62) belonged to ST2. The plasmids were grouped into 11 clusters by MOB-suite. CONCLUSIONS: This study furthers the understanding of A. baumannii antimicrobial-resistant genotypes, and may aid in prevention and control nosocomial infection caused by drug-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Genótipo , Tipagem de Sequências Multilocus , Fenótipo , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/efeitos dos fármacos , Humanos , China , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Hospitais , Farmacorresistência Bacteriana Múltipla/genética , Infecção Hospitalar/microbiologia , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto
20.
Curr Issues Mol Biol ; 46(1): 570-584, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248339

RESUMO

Acinetobacter baumannii is a low-GC-content Gram-negative opportunistic pathogen that poses a serious global public health threat. Convenient and rapid genetic manipulation is beneficial for elucidating its pathogenic mechanisms and developing novel therapeutic methods. In this study, we report a new CRISPR-FnCpf1-based two-plasmid system for versatile and precise genome editing in A. baumannii. After identification, this new system prefers to recognize the 5'-TTN-3' (N = A, T, C or G) and the 5'-CTV-3' (V = A, C or G) protospacer-adjacent motif (PAM) sequence and utilize the spacer with lengths ranging from 19 to 25 nt. In direct comparison with the existing CRISPR-Cas9 system, it exhibits approximately four times the targetable range in A. baumannii. Moreover, by employing a tandem dual crRNA expression cassette, the new system can perform large-fragment deletion and simultaneous multiple gene editing, which is difficult to achieve via CRISPR-Cas9. Therefore, the new system is valuable and can greatly expand the genome editing toolbox of A. baumannii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA