Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(2): e111185, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36416085

RESUMO

The misfolding and mutation of Cu/Zn superoxide dismutase (SOD1) is commonly associated with amyotrophic lateral sclerosis (ALS). SOD1 can accumulate within stress granules (SGs), a type of membraneless organelle, which is believed to form via liquid-liquid phase separation (LLPS). Using wild-type, metal-deficient, and different ALS disease mutants of SOD1 and computer simulations, we report here that the absence of Zn leads to structural disorder within two loop regions of SOD1, triggering SOD1 LLPS and amyloid formation. The addition of exogenous Zn to either metal-free SOD1 or to the severe ALS mutation I113T leads to the stabilization of the loops and impairs SOD1 LLPS and aggregation. Moreover, partial Zn-mediated inhibition of LLPS was observed for another severe ALS mutant, G85R, which shows perturbed Zn-binding. By contrast, the ALS mutant G37R, which shows reduced Cu-binding, does not undergo LLPS. In addition, SOD1 condensates induced by Zn-depletion exhibit greater cellular toxicity than aggregates formed by prolonged incubation under aggregating conditions. Overall, our work establishes a role for Zn-dependent modulation of SOD1 conformation and LLPS properties that may contribute to amyloid formation.


Assuntos
Superóxido Dismutase-1 , Zinco , Humanos , Esclerose Lateral Amiotrófica/enzimologia , Mutação , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Zinco/química , Dobramento de Proteína
2.
Trends Biochem Sci ; 47(1): 6-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366183

RESUMO

RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Semin Immunol ; 60: 101651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36155944

RESUMO

Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.


Assuntos
Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Doenças Neurodegenerativas/metabolismo , Microglia , Macrófagos/metabolismo , Modelos Animais de Doenças , Encéfalo
4.
Proc Natl Acad Sci U S A ; 120(28): e2302143120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399380

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas que Contêm Bromodomínio , Proteínas Quinases Ativadas por Mitógeno , Doenças Neurodegenerativas , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
Genes Dev ; 32(13-14): 929-943, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950492

RESUMO

While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of-function animals, including autoimmunity. Along with a loss of tolerance for many nervous system autoantigens, we found increased lysosomal exocytosis in Smcr8 mutant macrophages. In addition to elevated surface Lamp1 (lysosome-associated membrane protein 1) expression, we also observed enhanced secretion of lysosomal components-phenotypes that we subsequently observed in C9orf72 loss-of-function macrophages. Overall, our findings demonstrate that C9ORF72 and SMCR8 have interdependent functions in suppressing autoimmunity as well as negatively regulating lysosomal exocytosis-processes of potential importance to ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Autoimunidade/genética , Proteínas de Transporte/metabolismo , Exocitose/genética , Lisossomos/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica/genética , Humanos , Linfonodos/patologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mutação , Isoformas de Proteínas , Estabilidade Proteica , Esplenomegalia/genética
6.
J Biol Chem ; 300(9): 107640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39122006

RESUMO

RBM45 is an RNA-binding protein with roles in neural development by regulating RNA splicing. Its dysfunction and aggregation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). RBM45 harbors three RRM domains that potentially bind RNA. While the recognitions of RNA by its N-terminal tandem RRM domains (RRM1 and RRM2) have been well understood, the RNA-binding property of its C-terminal RRM (RRM3) remains unclear. In this work, we identified that the RRM3 of the RBM45 sequence specifically binds RNA with a GACG sequence, similar but not identical to those recognized by the RRM1 and RRM2. Further, we determined the crystal structure of RBM45RRM3 in complex with a GACG sequence-containing single-stranded DNA. Our structural results, together with the RNA-binding assays of mutants at key amino acid residues, revealed the molecular mechanism by which RBM45RRM3 recognizes an RNA sequence. Our finding on the RNA-binding property of the individual RRM module of RBM45 provides the foundation for unraveling the RNA-binding characteristics of full-length RBM45 and for understanding the biological functions of RBM45.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA/metabolismo , RNA/química , Cristalografia por Raios X , Domínios Proteicos , Ligação Proteica , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Modelos Moleculares , Proteínas do Tecido Nervoso
7.
Brain ; 147(10): 3547-3561, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703371

RESUMO

Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica , Proteínas Relacionadas à Autofagia , Demência Frontotemporal , Hipocampo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Masculino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pessoa de Meia-Idade , Feminino , Idoso , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adulto , Proteína C9orf72/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
J Biol Chem ; 299(6): 104798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156398

RESUMO

Canine degenerative myelopathy (DM), a fatal neurodegenerative disease in dogs, shares clinical and genetic features with amyotrophic lateral sclerosis, a human motor neuron disease. Mutations in the SOD1 gene encoding Cu/Zn superoxide dismutase (SOD1) cause canine DM and a subset of inherited human amyotrophic lateral sclerosis. The most frequent DM causative mutation is homozygous E40K mutation, which induces the aggregation of canine SOD1 but not of human SOD1. However, the mechanism through which canine E40K mutation induces species-specific aggregation of SOD1 remains unknown. By screening human/canine chimeric SOD1s, we identified that the humanized mutation of the 117th residue (M117L), encoded by exon 4, significantly reduced aggregation propensity of canine SOD1E40K. Conversely, introducing a mutation of leucine 117 to methionine, a residue homologous to canine, promoted E40K-dependent aggregation in human SOD1. M117L mutation improved protein stability and reduced cytotoxicity of canine SOD1E40K. Furthermore, crystal structural analysis of canine SOD1 proteins revealed that M117L increased the packing within the hydrophobic core of the ß-barrel structure, contributing to the increased protein stability. Our findings indicate that the structural vulnerability derived intrinsically from Met 117 in the hydrophobic core of the ß-barrel structure induces E40K-dependent species-specific aggregation in canine SOD1.


Assuntos
Doenças do Cão , Mutação , Doenças Neurodegenerativas , Superóxido Dismutase-1 , Animais , Cães , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/veterinária , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Doenças do Cão/genética , Doenças do Cão/metabolismo , Especificidade da Espécie
9.
Neurobiol Dis ; 200: 106614, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067491

RESUMO

Perineuronal nets (PNNs) are extracellular matrix structures that surround excitable neurons and their proximal dendrites. PNNs play an important role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can act as a trigger for neuronal death, and this has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). We therefore characterised PNNs around alpha motor neurons and the possible contributing cellular factors in the mutant TDP-43Q331K transgenic mouse, a slow onset ALS mouse model. PNNs around alpha motor neurons showed significant loss at mid-stage disease in TDP-43Q331K mice compared to wild type strain control mice. PNN loss coincided with an increased expression of matrix metallopeptidase-9 (MMP-9), an endopeptidase known to cleave PNNs, within the ventral horn. During mid-stage disease, increased numbers of microglia and astrocytes expressing MMP-9 were present in the ventral horn of TDP-43Q331K mice. In addition, TDP-43Q331K mice showed increased levels of aggrecan, a PNN component, in the ventral horn by microglia and astrocytes during this period. Elevated aggrecan levels within glia were accompanied by an increase in fractalkine expression, a chemotaxic protein responsible for the recruitment of microglia, in alpha motor neurons of onset and mid-stage TDP-43Q331K mice. Following PNN loss, alpha motor neurons in mid-stage TDP-43Q331K mice showed increased 3-nitrotyrosine expression, an indicator of protein oxidation. Together, our observations along with previous PNN research provide suggests a possible model whereby microglia and astrocytes expressing MMP-9 degrade PNNs surrounding alpha motor neurons in the TDP-43Q331K mouse. This loss of nets may expose alpha-motor neurons to oxidative damage leading to degeneration of the alpha motor neurons in the TDP-43Q331K ALS mouse model.


Assuntos
Agrecanas , Esclerose Lateral Amiotrófica , Metaloproteinase 9 da Matriz , Microglia , Neurônios Motores , Fagocitose , Animais , Camundongos , Agrecanas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fagocitose/fisiologia , Medula Espinal/metabolismo , Medula Espinal/patologia
10.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38742276

RESUMO

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Metaloproteinase 9 da Matriz , Microglia , Fagocitose , Superóxido Dismutase-1 , Animais , Camundongos , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Fagocitose/fisiologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
11.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750212

RESUMO

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Proteínas de Ligação a DNA , Proteínas Mitocondriais , Fatores de Transcrição , Feminino , Humanos , Masculino , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/patologia , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mitocôndrias/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Muscle Nerve ; 70(3): 333-345, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031772

RESUMO

INTRODUCTION/AIMS: In amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (SOD1-ALS), tofersen received accelerated approval in the United States and is available via expanded access programs (EAP) outside the United States. This multicenter study investigates clinical and patient-reported outcomes (PRO) and serum neurofilament light chain (sNfL) during tofersen treatment in an EAP in Germany. METHODS: Sixteen SOD1-ALS patients receiving tofersen for at least 6 months were analyzed. The ALS progression rate (ALS-PR), as measured by the monthly change of the ALS functional rating scale-revised (ALSFRS-R), slow vital capacity (SVC), and sNfL were investigated. PRO included the Measure Yourself Medical Outcome Profile (MYMOP2), Treatment Satisfaction Questionnaire for Medication (TSQM-9), and Net Promoter Score (NPS). RESULTS: Mean tofersen treatment was 11 months (6-18 months). ALS-PR showed a mean change of -0.2 (range 0 to -1.1) and relative reduction by 25%. Seven patients demonstrated increased ALSFRS-R. SVC was stable (mean 88%, range -15% to +28%). sNfL decreased in all patients except one heterozygous D91A-SOD1 mutation carrier (mean change of sNfL -58%, range -91 to +27%, p < .01). MYMOP2 indicated improved symptom severity (n = 10) or yet perception of partial response (n = 6). TSQM-9 showed high global treatment satisfaction (mean 83, SD 16) although the convenience of drug administration was modest (mean 50, SD 27). NPS revealed a very high recommendation rate for tofersen (NPS +80). DISCUSSION: Data from this EAP supported the clinical and sNfL response to tofersen in SOD1-ALS. PRO suggested a favorable patient perception of tofersen treatment in clinical practice.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Neurofilamentos , Medidas de Resultados Relatados pelo Paciente , Superóxido Dismutase-1 , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Superóxido Dismutase-1/genética , Proteínas de Neurofilamentos/sangue , Resultado do Tratamento , Progressão da Doença , Adulto , Oligonucleotídeos/uso terapêutico
13.
Muscle Nerve ; 70(1): 36-41, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38712849

RESUMO

The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) has become the most widely utilized measure of disease severity in patients with ALS, with change in ALSFRS-R from baseline being a trusted primary outcome measure in ALS clinical trials. This is despite the scale having several established limitations, and although alternative scales have been proposed, it is unlikely that these will displace ALSFRS-R in the foreseeable future. Here, we discuss the merits of delta FS (ΔFS), the slope or rate of ALSFRS-R decline over time, as a relevant tool for innovative ALS study design, with an as yet untapped potential for optimization of drug effectiveness and patient management. In our view, categorization of the ALS population via the clinical determinant of post-onset ΔFS is an important study design consideration. It serves not only as a critical stratification factor and basis for patient enrichment but also as a tool to explore differences in treatment response across the overall population; thereby, facilitating identification of responder subgroups. Moreover, because post-onset ΔFS is derived from information routinely collected as part of standard patient care and monitoring, it provides a suitable patient selection tool for treating physicians. Overall, post-onset ΔFS is a very attractive enrichment tool that is, can and should be regularly incorporated into ALS trial design.


Assuntos
Esclerose Lateral Amiotrófica , Projetos de Pesquisa , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Ensaios Clínicos como Assunto/métodos , Progressão da Doença , Avaliação de Resultados em Cuidados de Saúde/normas , Índice de Gravidade de Doença
14.
Expert Opin Emerg Drugs ; 29(2): 93-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516735

RESUMO

INTRODUCTION: Amyotrophic Lateral Sclerosis is a rapidly progressive motor neuron disorder causing severe disability and premature death. Owing to the advances in uncovering ALS pathophysiology, efficient clinical trial design and research advocacy program, several disease-modifying drugs have been approved for treating ALS. Despite this progress, ALS remains a rapidly disabling and life shortening condition. There is a critical need for more effective therapies. AREAS COVERED: Here, we reviewed the emerging ALS therapeutics undergoing phase II & III clinical trials. To identify the investigational drugs, we searched ALS and phase II/III trials that are active and recruiting or not yet recruiting on clinicaltrials.gov and Pharmaprojects database. EXPERT OPINION: The current pipeline is larger and more diverse than ever, with drugs targeting potential genetic and retroviral causes of ALS and drugs targeting a wide array of downstream pathways, including RNA metabolism, protein aggregation, integrated stress response and neuroinflammation.We remain most excited about those that target direct causes of ALS, e.g. antisense oligonucleotides targeting causative genes. Drugs that eliminate abnormal protein aggregates are also up-and-coming. Eventually, because of the heterogeneity of ALS pathophysiology, biomarkers that determine which biological events are most important for an individual ALS patient are needed.


Assuntos
Esclerose Lateral Amiotrófica , Ensaios Clínicos Fase II como Assunto , Desenvolvimento de Medicamentos , Drogas em Investigação , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Humanos , Drogas em Investigação/farmacologia , Animais , Ensaios Clínicos Fase III como Assunto , Desenho de Fármacos , Terapia de Alvo Molecular , Projetos de Pesquisa
15.
Eur J Neurol ; 31(9): e16371, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38937912

RESUMO

BACKGROUND AND PURPOSE: Neurofilament light chain (NFL) has been shown to be increased in amyotrophic lateral sclerosis (ALS) and, to a lesser extent, in frontotemporal dementia (FTD). A meta-analysis of NFL in ALS and FTD was performed. METHODS: Available studies comparing cerebrospinal fluid and blood NFL levels in ALS versus neurologically healthy controls (NHCs), other neurological diseases (ONDs) and ALS mimics, as well as in FTD and related entities (behavioural variant of FTD and frontotemporal lobar degeneration syndromes) versus NHCs, ONDs and other dementias were evaluated. RESULTS: In ALS, both cerebrospinal fluid and blood levels of NFL were higher compared to other categories. In FTD, behavioural variant of FTD and frontotemporal lobar degeneration syndromes, NFL levels were consistently higher compared to NHCs; however, several comparisons with ONDs and other dementias did not demonstrate significant differences. DISCUSSION: Amyotrophic lateral sclerosis is characterized by higher NFL levels compared to most other conditions. In contrast, NFL is not as good at discriminating FTD from other dementias.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Proteínas de Neurofilamentos , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/sangue , Humanos , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/sangue , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Demência Frontotemporal/sangue
16.
Brain ; 146(10): 4105-4116, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075222

RESUMO

Increasing evidence shows that disease spreading in amyotrophic lateral sclerosis (ALS) follows a preferential pattern with more frequent involvement of contiguous regions from the site of symptom onset. The aim of our study was to assess if: (i) the burden of upper (UMN) and lower motor neuron (LMN) involvement influences directionality of disease spreading; (ii) specific patterns of disease progression are associated with motor and neuropsychological features of different ALS subtypes (classic, bulbar, primary lateral sclerosis, UMN-predominant, progressive muscular atrophy, flail arm, flail leg); and (iii) specific clinical features may help identify ALS subtypes, which remain localized to the site of onset for a prolonged time (regionally entrenching ALS). A single-centre, retrospective cohort of 913 Italian ALS patients was evaluated to assess correlations between directionality of the disease process after symptom onset and motor/neuropsychological phenotype. All patients underwent an extensive evaluation including the following clinical scales: Penn Upper Motor Neuron Score (PUMNS), MRC Scale for Muscle Strength and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). The most frequent initial spreading pattern was that towards adjacent horizontal regions (77.3%), which occurred preferentially in patients with lower MRC scores (P = 0.038), while vertical diffusion (21.1%) was associated with higher PUMNS (P < 0.001) and with reduced survival (P < 0.001). Non-contiguous disease spreading was associated with more severe UMN impairment (P = 0.003), while contiguous disease pattern with lower MRC scores. Furthermore, non-contiguous disease spreading was associated with more severe cognitive impairment in both executive and visuospatial ECAS domains. Individuals with regionally entrenching ALS were more frequently female (45.6% versus 36.9%; P = 0.028) and had higher frequencies of symmetric disease onset (40.3% versus 19.7%; P < 0.001) and bulbar phenotype (38.5% versus 16.4%; P < 0.001). Our study suggests that motor phenotypes characterized by a predominant UMN involvement are associated with a vertical pattern of disease progression reflecting ipsilateral spreading within the motor cortex, while those with predominant LMN involvement display more frequently a horizontal spreading from one side of the spinal cord to the other. These observations raise the hypothesis that one of the mechanisms underlying disease spreading in ALS pathology is represented by diffusion of toxic factors in the neuron microenvironment. Finally, it is possible that in our cohort, regionally entrenching ALS forms are mainly observed in patients with atypical bulbar phenotypes, characterized by a slowly progressive course and relatively benign prognosis.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Feminino , Esclerose Lateral Amiotrófica/patologia , Estudos Retrospectivos , Neurônios Motores/patologia , Fenótipo , Progressão da Doença
17.
Health Qual Life Outcomes ; 22(1): 69, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215326

RESUMO

BACKGROUND: Patient reported outcome measures (PROMs) can be used to assess the impact of health conditions upon an individual's health-related quality of life (HRQoL). Whilst PROMs have been used to quantify the HRQoL impact of amyotrophic lateral sclerosis (ALS), existing instruments may not fully capture what matters to people living with ALS (plwALS) or be appropriate to be used directly to inform the cost-effectiveness of new treatments. This highlights a need for a new condition-specific PROM that can both capture what's important to plwALS and be used in economic evaluation. This study has two key aims: 1) to produce a novel PROM for measuring HRQoL in plwALS (PROQuALS). 2) to value a set of items from the novel PROM to generate an associated preference-weighted measure (PWM) that will enable utility values to be generated. METHODS: A mixed-methods study design will be conducted across three stages. Stage 1 involves concept elicitation and the generation of draft PROM content from a robust and comprehensive systematic review of HRQoL in ALS, with input from plwALS. Stage 2 consists of cognitive debriefing of the draft PROM content to ascertain its content validity (Stage 2a), followed by a psychometric survey (Stage 2b) to assess statistical performance. Evidence from Stage 2 will be used to make decisions on the final content and format of the novel PROM. Stage 3 will involve valuation and econometric modeling using health economics methods to generate preference weights, so a PWM derived from the novel PROM can be used in the cost-effectiveness analyses of treatments. Patient and clinical advisory groups will have critical, collaborative input throughout the project. DISCUSSION: The novel PROM will be designed to comprehensively assess important aspects of HRQoL to plwALS and to quantify HRQoL in terms of subjective impact. The PROQuALS measure will be available for use in research and healthcare settings. The associated PWM component will extend and enable the use of PROQuALS in cost-effective analyses of new treatments for ALS. TRIAL REGISTRATION: Not applicable.


Assuntos
Esclerose Lateral Amiotrófica , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Esclerose Lateral Amiotrófica/psicologia , Esclerose Lateral Amiotrófica/terapia , Humanos , Qualidade de Vida/psicologia , Inquéritos e Questionários , Projetos de Pesquisa , Psicometria , Análise Custo-Benefício
18.
Neurol Sci ; 45(9): 4373-4381, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38607533

RESUMO

BACKGROUND: SPG18 is caused by mutations in the endoplasmic reticulum lipid raft associated 2 (ERLIN2) gene. Autosomal recessive (AR) mutations are usually associated with complicated hereditary spastic paraplegia (HSP), while autosomal dominant (AD) mutations use to cause pure SPG18. AIM: To define the variegate clinical spectrum of the SPG18 and to evaluate a dominant negative effect of erlin2 (encoded by ERLIN2) on oligomerization as causing differences between AR and AD phenotypes. METHODS: In a four-generation pedigree with an AD pattern, a spastic paraplegia multigene panel test was performed. Oligomerization of erlin2 was analyzed with velocity gradient assay in fibroblasts of the proband and healthy subjects. RESULTS: Despite the common p.V168M mutation identified in ERLIN2, a phenoconversion to amyotrophic lateral sclerosis (ALS) was observed in the second generation, pure HSP in the third generation, and a complicated form with psychomotor delay and epilepsy in the fourth generation. Erlin2 oligomerization was found to be normal. DISCUSSION: We report the first AD SPG18 family with a complicated phenotype, and we ruled out a dominant negative effect of V168M on erlin2 oligomerization. Therefore, our data do not support the hypothesis of a relationship between the mode of inheritance and the phenotype, but confirm the multifaceted nature of SPG18 on both genetic and clinical point of view. Clinicians should be aware of the importance of conducting an in-depth clinical evaluation to unmask all the possible manifestations associated to an only apparently pure SPG18 phenotype. We confirm the genotype-phenotype correlation between V168M and ALS emphasizing the value of close follow-up.


Assuntos
Proteínas de Membrana , Mutação , Linhagem , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Feminino , Masculino , Adulto , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem , Adolescente , Genes Dominantes , Criança , Idoso
19.
Biochemistry (Mosc) ; 89(Suppl 1): S34-S56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621743

RESUMO

Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Humanos , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Citoplasma/metabolismo , Mutação , Modelos Animais de Doenças
20.
Biochem Genet ; 62(5): 3658-3680, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38196030

RESUMO

One of the recognized motor neuron degenerative disorders is amyotrophic lateral sclerosis (ALS). By now, several mutations have been reported and linked to ALS patients, some of which are induced by mutations in the human superoxide dismutase (hSOD1) gene. The ALS-provoking mutations are located throughout the structure of hSOD1 and promote the propensity to aggregate. Despite numerous investigations, the underlying mechanism related to the toxicity of mutant hSOD1 through the gain of a toxic function is still vague. We surveyed two mutant forms of hSOD1 by removing and adding cysteine at positions 146 and 72, respectively, to investigate the biochemical characterization and amyloid formation. Our findings predicted the harmful and destabilizing impact of two SOD1 mutants using multiple programs. The specific activity of the wild-type form was about 1.42- and 1.92-fold higher than that of C146R and G72C mutants, respectively. Comparative structural studies using CD spectropolarimetry, and intrinsic and ANS fluorescence showed alterations in secondary structure content, exposure of hydrophobic patches, and structural compactness of WT-hSOD1 vs. mutants. We demonstrated that two mutants were able to promote amyloid-like aggregates under amyloid induction circumstances (50-mM Tris-HCl pH 7.4, 0.2-M KSCN, 50-mM DTT, 37 °C, 190 rpm). Monitoring aggregates were done using an enhancement in thioflavin T fluorescence and alterations in Congo red absorption. The mutants accelerated fibrillation with subsequently greater fluorescence amplitude and a shorter lag time compared to WT-SOD1. These findings support the aggregation of ALS-associated SOD1 mutants as an integral part of ALS pathology.


Assuntos
Esclerose Lateral Amiotrófica , Mutação , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/química , Amiloide/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA