Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.727
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(6): 1361-1372.e10, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193110

RESUMO

A key aspect of genomic medicine is to make individualized clinical decisions from personal genomes. We developed a machine-learning framework to integrate personal genomes and electronic health record (EHR) data and used this framework to study abdominal aortic aneurysm (AAA), a prevalent irreversible cardiovascular disease with unclear etiology. Performing whole-genome sequencing on AAA patients and controls, we demonstrated its predictive precision solely from personal genomes. By modeling personal genomes with EHRs, this framework quantitatively assessed the effectiveness of adjusting personal lifestyles given personal genome baselines, demonstrating its utility as a personal health management tool. We showed that this new framework agnostically identified genetic components involved in AAA, which were subsequently validated in human aortic tissues and in murine models. Our study presents a new framework for disease genome analysis, which can be used for both health management and understanding the biological architecture of complex diseases. VIDEO ABSTRACT.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Genômica , Animais , Aneurisma da Aorta Abdominal/genética , Área Sob a Curva , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina , Camundongos , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Curva ROC , Sequenciamento Completo do Genoma
2.
Semin Cell Dev Biol ; 155(Pt B): 32-44, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37507331

RESUMO

Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.


Assuntos
Neoplasias , Doenças Vasculares , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia
3.
Immunity ; 47(5): 959-973.e9, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150241

RESUMO

Aortic aneurysms are life-threatening conditions with effective treatments mainly limited to emergency surgery or trans-arterial endovascular stent grafts, thus calling for the identification of specific molecular targets. Genetic studies have highlighted controversial roles of transforming growth factor ß (TGF-ß) signaling in aneurysm development. Here, we report on aneurysms developing in adult mice after smooth muscle cell (SMC)-specific inactivation of Smad4, an intracellular transducer of TGF-ß. The results revealed that Smad4 inhibition activated interleukin-1ß (IL-1ß) in SMCs. This danger signal later recruited innate immunity in the adventitia through chemokine (C-C motif) ligand 2 (CCL2) and modified the mechanical properties of the aortic wall, thus favoring vessel dilation. SMC-specific Smad4 deletion in Il1r1- or Ccr2-null mice resulted in milder aortic pathology. A chronic treatment with anti-IL-1ß antibody effectively hampered aneurysm development. These findings identify a mechanistic target for controlling the progression of aneurysms with compromised TGF-ß signaling, such as those driven by SMAD4 mutations.


Assuntos
Aneurisma Aórtico/prevenção & controle , Interleucina-1beta/antagonistas & inibidores , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Quimiocina CCL2/antagonistas & inibidores , Interleucina-1beta/biossíntese , Camundongos , Miócitos de Músculo Liso/imunologia , NF-kappa B/fisiologia , Receptores CCR2/antagonistas & inibidores , Proteína Smad4/fisiologia , Tamoxifeno/farmacologia
4.
Circ Res ; 134(11): 1495-1511, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38686580

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS: Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS: In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor ß) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS: Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.


Assuntos
Fator 3 Ativador da Transcrição , Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Apoptose , Células Cultivadas , Angiotensina II , Proliferação de Células , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Modelos Animais de Doenças
5.
Circulation ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989575

RESUMO

BACKGROUND: Fenestrated-branched endovascular aortic repair (FB-EVAR) has been used as a minimally invasive alternative to open surgical repair to treat patients with thoracoabdominal aortic aneurysms (TAAAs). The aim of this study was to evaluate aortic-related mortality (ARM) and aortic aneurysm rupture after FB-EVAR of TAAAs. METHODS: Patients enrolled in 8 prospective, nonrandomized, physician-sponsored investigational device exemption studies between 2005 and 2020 who underwent elective FB-EVAR of asymptomatic intact TAAAs were analyzed. Primary end points were ARM, defined as any early mortality (30 days or in hospital) or late mortality from aortic rupture, dissection, organ or limb malperfusion attributable to aortic disease, complications of reinterventions, or aortic rupture. Secondary end points were early major adverse events, TAAA life-altering events (defined as death, permanent spinal cord injury, permanent dialysis, or stroke), all-cause mortality, and secondary interventions. RESULTS: A total of 1109 patients were analyzed; 589 (53.1%) had extent I-III and 520 (46.9%) had extent IV TAAAs. Median age was 73.4 years (interquartile range, 68.1-78.3 years); 368 (33.2%) were women. Early mortality was 2.7% (n=30); congestive heart failure was associated with early mortality (odds ratio, 3.30 [95% CI, 1.22-8.02]; P=0.01). Incidence of early aortic rupture was 0.4% (n=4). Incidence of early major adverse events and TAAA life-altering events was 20.4% (n=226) and 7.7% (n=85), respectively. There were 30 late ARMs; 5-year cumulative incidence was 3.8% (95% CI, 2.6%-5.4%); older age and extent I-III TAAAs were independently associated with late ARM (each P<0.05). Fourteen late aortic ruptures occurred; 5-year cumulative incidence was 2.7% (95% CI, 1.2%-4.3%); extent I-III TAAAs were associated with late aortic rupture (hazard ratio, 5.85 [95% CI, 1.31-26.2]; P=0.02). Five-year all-cause mortality was 45.7% (95% CI, 41.7%-49.4%). Five-year cumulative incidence of secondary intervention was 40.3% (95% CI, 35.8%-44.5%). CONCLUSIONS: ARM and aortic rupture are uncommon after elective FB-EVAR of asymptomatic intact TAAAs. Half of the ARMs occurred early, and most of the late deaths were not aortic related. Late all-cause mortality rate and the need for secondary interventions were 46% and 40%, respectively, 5 years after FB-EVAR. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT02089607, NCT02050113, NCT02266719, NCT02323581, NCT00583817, NCT01654133, NCT00483249, NCT02043691, and NCT01874197.

6.
Circulation ; 149(11): 843-859, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38018467

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Humanos , Camundongos , Animais , Gangliosídeo G(M3)/metabolismo , Proteômica , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/metabolismo , Ferro , Miócitos de Músculo Liso/metabolismo , Modelos Animais de Doenças
7.
Circulation ; 149(24): 1903-1920, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38357802

RESUMO

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Macrófagos , Septinas , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP , Animais , Humanos , Masculino , Camundongos , Angiotensina II/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/genética , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Neuropeptídeos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Septinas/metabolismo , Septinas/genética , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
8.
Circulation ; 150(1): 30-46, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557060

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease without effective pharmacological approaches. The nuclear hormone receptor LXRα (liver X receptor α), encoded by the NR1H3 gene, serves as a critical transcriptional mediator linked to several vascular pathologies, but its role in AAA remains elusive. METHODS: Through integrated analyses of human and murine AAA gene expression microarray data sets, we identified NR1H3 as a candidate gene regulating AAA formation. To investigate the role of LXRα in AAA formation, we used global Nr1h3-knockout and vascular smooth muscle cell-specific Nr1h3-knockout mice in 2 AAA mouse models induced with angiotensin II (1000 ng·kg·min; 28 days) or calcium chloride (CaCl2; 0.5 mol/L; 42 days). RESULTS: Upregulated LXRα was observed in the aortas of patients with AAA and in angiotensin II- or CaCl2-treated mice. Global or vascular smooth muscle cell-specific Nr1h3 knockout inhibited AAA formation in 2 mouse models. Loss of LXRα function prevented extracellular matrix degeneration, inflammation, and vascular smooth muscle cell phenotypic switching. Uhrf1, an epigenetic master regulator, was identified as a direct target gene of LXRα by integrated analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing. Susceptibility to AAA development was consistently enhanced by UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) in both angiotensin II- and CaCl2-induced mouse models. We then determined the CpG methylation status and promoter accessibility of UHRF1-mediated genes using CUT&Tag (cleavage under targets and tagmentation), RRBS (reduced representation bisulfite sequencing), and ATAC-seq (assay for transposase-accessible chromatin with sequencing) in vascular smooth muscle cells, which revealed that the recruitment of UHRF1 to the promoter of miR-26b led to DNA hypermethylation accompanied by relatively closed chromatin states, and caused downregulation of miR-26b expression in AAA. Regarding clinical significance, we found that underexpression of miR-26b-3p correlated with high risk in patients with AAA. Maintaining miR-26b-3p expression prevented AAA progression and alleviated the overall pathological process. CONCLUSIONS: Our study reveals a pivotal role of the LXRα/UHRF1/miR-26b-3p axis in AAA and provides potential biomarkers and therapeutic targets for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Proteínas Estimuladoras de Ligação a CCAAT , Epigênese Genética , Receptores X do Fígado , Camundongos Knockout , MicroRNAs , Ubiquitina-Proteína Ligases , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Metilação de DNA , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Angiotensina II/farmacologia
9.
Circulation ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129620

RESUMO

Aortopathy encompasses a spectrum of conditions predisposing to dilation, aneurysm, dissection, or rupture of the aorta and other blood vessels. Aortopathy is diagnosed commonly in children, from infancy through adolescence, primarily affecting the thoracic aorta, with variable involvement of the peripheral vasculature. Pathogeneses include connective tissue disorders, smooth muscle contraction disorders, and congenital heart disease, including bicuspid aortic valve, among others. The American Heart Association has published guidelines for diagnosis and management of thoracic aortic disease. However, these guidelines are predominantly focused on adults and cannot be applied adeptly to growing children with emerging features, growth and developmental changes, including puberty, and different risk profiles compared with adults. Management to reduce risk of progressive aortic dilation and dissection or rupture in children is complex and involves genetic testing, cardiovascular imaging, medical therapy, lifestyle modifications, and surgical guidance that differ in many ways from adult management. Pediatric practice varies widely, likely because aortopathy is pathogenically heterogeneous, including genetic and nongenetic conditions, and there is limited published evidence to guide care in children. To optimize care and reduce variation in management, experts in pediatric aortopathy convened to generate this scientific statement regarding the cardiovascular care of children with aortopathy. Available evidence and expert consensus were combined to create this scientific statement. The most common causes of pediatric aortopathy are reviewed. This document provides a general framework for cardiovascular management of aortopathy in children, while allowing for modification based on the personal and familial characteristics of each child and family.

10.
Annu Rev Genomics Hum Genet ; 23: 223-253, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044906

RESUMO

Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFß signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção Aórtica/genética , Dissecção Aórtica/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo
11.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
12.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38995239

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 2 Relacionado a NF-E2 , Fenótipo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Knockout , Análise de Célula Única , Camundongos Endogâmicos C57BL , Angiotensina II/farmacologia , Análise de Sequência de RNA , Modelos Animais de Doenças
13.
FASEB J ; 38(2): e23401, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236196

RESUMO

Ferroptosis, a type of iron-catalyzed necrosis, is responsible for vascular smooth muscle cell (VSMC) death and serves as a potential therapeutic target for alleviating aortic aneurysm. Here, our study explored the underlying mechanism of ferroptosis affecting VSMC functions and the resultant formation of AAA using its inhibitor Ferrostatin-1 (Fer-1). Microarray-based gene expression profiling was employed to identify differentially expressed genes related to AAA and ferroptosis. An AAA model was established by angiotensin II (Ang II) induction in apolipoprotein E-knockout (ApoE-/- ) mice, followed by injection of Fer-1 and RSL-3 (ferroptosis inducer). Then, the role of Fer-1 and RSL-3 in the ferroptosis of VSMCs and AAA formation was analyzed in Ang II-induced mice. Primary mouse VSMCs were cultured in vitro and treated with Ang II, Fer-1, sh-SLC7A11, or sh-GPX4 to assess the effect of Fer-1 via the SLC7A11/GPX axis. Bioinformatics analysis revealed that GPX4 was involved in the fibrosis formation of AAA, and there was an interaction between SLC7A11 and GPX4. In vitro assays showed that Fer-1 alleviated Ang II-induced ferroptosis of VSMCs and retard the consequent AAA formation. The mechanism was associated with activation of the SLC7A11/GPX4 pathway. Silencing of SLC7A11 or GPX4 could inhibit the ameliorating effect of Fer-1 on the ferroptosis of VSMCs. In vivo animal studies further demonstrated that Fer-1 inhibited Ang II-induced ferroptosis and vessel wall structural abnormalities in AAA mouse through activation of the SLC7A11/GPX4 pathway. Fer-1 may prevent AAA formation through activation of the SLC7A11/GPX4 pathway.


Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Hormônios Peptídicos , Fenilenodiaminas , Animais , Camundongos , Músculo Liso Vascular , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Cicloexilaminas/farmacologia , Angiotensina II/farmacologia
14.
Circ Res ; 132(4): e78-e93, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36688311

RESUMO

BACKGROUND: Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS: Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS: Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKß, resulting in an increased IKKß (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS: Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Quinase I-kappa B/metabolismo , Ativação de Macrófagos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Inflamação/metabolismo , Angiotensina II/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 44(7): 1694-1701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779853

RESUMO

BACKGROUND: Epidemiological and mechanistic data support a potential causal link between cardiovascular disease (CVD) and cancer. Abdominal aortic aneurysms (AAAs) represent a common form of CVD with at least partially distinct genetic and biologic pathogenesis from other forms of CVD. The risk of cancer and how this risk differs compared with other forms of CVD, is unknown among AAA patients. We conducted a retrospective cohort study using the IBM MarketScan Research Database to test whether individuals with AAA have a higher cancer risk independent of traditional shared risk factors. METHODS: All individuals ≥18 years of age with ≥36 months of continuous coverage between 2008 and 2020 were enrolled. Those with potential Mendelian etiologies of AAA, aortic aneurysm with nonspecific anatomic location, or a cancer diagnosis before the start of follow-up were excluded. A subgroup analysis was performed of individuals having the Health Risk Assessment records including tobacco use and body mass index. The following groups of individuals were compared: (1) with AAA, (2) with non-AAA CVD, and (3) without any CVD. RESULTS: The propensity score-matched cohort included 58 993 individuals with AAA, 117 986 with non-AAA CVD, and 58 993 without CVD. The 5-year cumulative incidence of cancer was 13.1% (12.8%-13.5%) in participants with AAA, 10.1% (9.9%-10.3%) in participants with non-AAA CVD, and 9.6% (9.3%-9.9%) in participants without CVD. Multivariable-adjusted Cox proportional hazards regression models found that patients with AAA exhibited a higher cancer risk than either those with non-AAA CVD (hazard ratio, 1.28 [95% CI, 1.23-1.32]; P<0.001) or those without CVD (hazard ratio, 1.32 [95% CI, 1.26-1.38]; P<0.001). Results remained consistent after excluding common smoking-related cancers and when adjusting for tobacco use and body mass index. CONCLUSIONS: Patients with AAA may have a unique risk of cancer requiring further mechanistic study and investigation of the role of enhanced cancer screening.


Assuntos
Aneurisma da Aorta Abdominal , Neoplasias , Humanos , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/diagnóstico , Masculino , Incidência , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Fatores de Risco , Neoplasias/epidemiologia , Neoplasias/diagnóstico , Medição de Risco , Estados Unidos/epidemiologia , Fatores de Tempo , Bases de Dados Factuais , Adulto , Idoso de 80 Anos ou mais
16.
Arterioscler Thromb Vasc Biol ; 44(8): 1748-1763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934115

RESUMO

BACKGROUND: Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-ß (transforming growth factor-ß) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-ß activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-ß and to prevent it from activating its receptor. METHODS: We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS: In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-ß signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-ß antibody or additional SMC-specific loss of the TGF-ß receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS: In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-ß signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Transdução de Sinais , Tenascina , Remodelação Vascular , Animais , Humanos , Masculino , Camundongos , Angiotensina II , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/prevenção & controle , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertensão/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Tenascina/metabolismo , Tenascina/genética , Tenascina/deficiência , Fator de Crescimento Transformador beta/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 44(7): 1555-1569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779856

RESUMO

BACKGROUND: ß-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS: BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS: BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS: BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.


Assuntos
Aminopropionitrilo , Aorta Torácica , Ruptura Aórtica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Aminopropionitrilo/toxicidade , Aminopropionitrilo/farmacologia , Aorta Torácica/patologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Feminino , Masculino , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/patologia , Ruptura Aórtica/metabolismo , Ruptura Aórtica/prevenção & controle , Camundongos , Remodelação Vascular/efeitos dos fármacos , Dilatação Patológica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fatores Etários , Fatores de Tempo , Fatores Sexuais , Proliferação de Células/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 44(7): 1467-1473, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924435

RESUMO

CLINICAL PROBLEM: Most abdominal aortic aneurysms (AAAs) are small with low rupture risk (<1%/y) when diagnosed but slowly expand to ≥55 mm and undergo surgical repair. Patients and clinicians require medications to limit AAA growth and rupture, but drugs effective in animal models have not translated to patients. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM MOUSE MODELS: Use models that simulate human AAA tissue pathology, growth patterns, and rupture; focus on the clinically relevant outcomes of growth and rupture; design studies with the rigor required of human clinical trials; monitor AAA growth using reproducible ultrasound; and perform studies in both males and females. SUMMARY OF STRENGTHS AND WEAKNESSES OF MOUSE MODELS: The aortic adventitial elastase oral ß-aminopropionitrile model has many strengths including simulating human AAA pathology and modeling prolonged aneurysm growth. The Ang II (angiotensin II) model performed less well as it better simulates acute aortic syndrome than AAA. The elastase plus TGFß (transforming growth factor-ß) blocking antibody model displays a high rupture rate, making prolonged monitoring of AAA growth not feasible. The elastase perfusion and calcium chloride models both display limited AAA growth.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Modelos Animais de Doenças , Animais , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/patologia , Humanos , Ruptura Aórtica/prevenção & controle , Ruptura Aórtica/diagnóstico por imagem , Ruptura Aórtica/patologia , Elastase Pancreática , Camundongos , Aorta Abdominal/patologia , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/metabolismo , Feminino , Progressão da Doença , Masculino
19.
Brain ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084678

RESUMO

Genome-wide association studies (GWAS) have become increasingly popular for detecting numerous loci associated with intracranial aneurysm (IA), but how these loci function remains unclear. In this study, we employed an integrative analytical pipeline to efficiently transform genetic associations and identify novel genes for IA. Using multidimensional high-throughput data, we integrated proteome-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR) and Bayesian co-localization analyses to prioritize genes that can increase IA risk by altering their expression and protein abundances in the brain and blood. Moreover, single-cell RNA sequencing (scRNA-seq) of the circle of Willis was performed to enrich filtered genes in cells, and gene set enrichment analysis (GSEA) was conducted for each gene using bulk RNA-seq data for IA. No significant genes with cis-regulated plasma protein levels were proven to be associated with IA. The protein abundances of five genes in the brain were found to be associated with IA. According to cellular enrichment analysis, these five genes were expressed mainly in the endothelium, fibroblasts and vascular smooth muscle cells. Only three genes, CNNM2, GPRIN3 and UFL1, passed MR and Bayesian co-localization analyses. While UFL1 was not validated in confirmation PWAS as it was not profiled, it was validated in TWAS. GSEA suggested these three genes are associated with the cell cycle. In addition, the protein abundance of CNNM2 was found to be associated with IA rupture (based on PWAS, MR and co-localization analyses). Our findings indicated that CNNM2, GPRIN3 and UFL1 (CNNM2 correlated with IA rupture) are potential IA risk genes that may provide a broad hint for future research on possible mechanisms and therapeutic targets for IA.

20.
Cell Mol Life Sci ; 81(1): 175, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597937

RESUMO

Phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a crucial role in abdominal aortic aneurysm (AAA) formation. CARMN, a highly conserved, VSMC-enriched long noncoding RNA (lncRNA), is integral in orchestrating various vascular pathologies by modulating the phenotypic dynamics of VSMCs. The influence of CARMN on AAA formation, particularly its mechanisms, remains enigmatic. Our research, employing single-cell and bulk RNA sequencing, has uncovered a significant suppression of CARMN in AAA specimens, which correlates strongly with the contractile function of VSMCs. This reduced expression of CARMN was consistent in both 7- and 14-day porcine pancreatic elastase (PPE)-induced mouse models of AAA and in human clinical cases. Functional analyses disclosed that the diminution of CARMN exacerbated PPE-precipitated AAA formation, whereas its augmentation conferred protection against such formation. Mechanistically, we found CARMN's capacity to bind with SRF, thereby amplifying its role in driving the transcription of VSMC marker genes. In addition, our findings indicate an enhancement in CAMRN transcription, facilitated by the binding of NRF2 to its promoter region. Our study indicated that CARMN plays a protective role in preventing AAA formation and restrains the phenotypic transformation of VSMC through its interaction with SRF. Additionally, we observed that the expression of CARMN is augmented by NRF2 binding to its promoter region. These findings suggest the potential of CARMN as a viable therapeutic target in the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Humanos , Camundongos , Animais , Suínos , RNA Longo não Codificante/genética , Músculo Liso Vascular , Fator 2 Relacionado a NF-E2/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA