Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446273

RESUMO

Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Tubulina (Proteína)/metabolismo , Glioblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Colchicina/farmacologia , Linhagem Celular Tumoral , Tetrazóis/farmacologia , Estrutura Molecular , Simulação de Acoplamento Molecular
2.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014500

RESUMO

Natural products represent an excellent source of unprecedented anticancer compounds. However, the identification of the mechanism of action remains a major challenge. Several techniques and methodologies have been considered, but with limited success. In this work, we explored the combination of live cell imaging and machine learning techniques as a promising tool to depict in a fast and affordable test the mode of action of natural compounds with antiproliferative activity. To develop the model, we selected the non-small cell lung cancer cell line SW1573, which was exposed to the known antimitotic drugs paclitaxel, colchicine and vinblastine. The novelty of our methodology focuses on two main features with the highest relevance, (a) meaningful phenotypic metrics, and (b) fast Fourier transform (FFT) of the time series of the phenotypic parameters into their corresponding amplitudes and phases. The resulting algorithm was able to cluster the microtubule disruptors, and meanwhile showed a negative correlation between paclitaxel and the other treatments. The FFT approach was able to group the samples as efficiently as checking by eye. This methodology could easily scale to group a large amount of data without visual supervision.


Assuntos
Antimitóticos , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antimitóticos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/metabolismo , Microtúbulos/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo
3.
Biochem Pharmacol ; 184: 114364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310050

RESUMO

Eg5, the product of Kif11 gene, also known as kinesin spindle protein, is a motor protein involved in the proper establishment of a bipolar mitotic spindle. Eg5 is one of the 45 different kinesins coded in the human genome of the kinesin motor protein superfamily. Over the last three decades Eg5 has attracted great interest as a promising new mitotic target. The identification of monastrol as specific inhibitor of the ATPase activity of the motor domain of Eg5 inhibiting the Eg5 microtubule motility in vitro and in cellulo sparked an intense interest in academia and industry to pursue the identification of novel small molecules that target Eg5 in order to be used in cancer chemotherapy based on the anti-mitotic strategy. Several Eg5 inhibitors entered clinical trials. Currently the field is faced with the problem that most of the inhibitors tested exhibited only limited efficacy. However, one Eg5 inhibitor, Arry-520 (clinical name filanesib), has demonstrated clinical efficacy in patients with multiple myeloma and is scheduled to enter phase III clinical trials. At the same time, new trends in Eg5 inhibitor research are emerging, including an increased interest in novel inhibitor binding sites and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of Eg5-inhibitor complexes, traces the possible development of resistance to Eg5 inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this active field in drug discovery.


Assuntos
Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antimitóticos/química , Antimitóticos/farmacocinética , Antineoplásicos/farmacocinética , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Cinesinas/química , Terapia de Alvo Molecular/métodos
4.
Adv Ther (Weinh) ; 4(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34423112

RESUMO

Different tetrahydrobenzo[b]thiophene derivatives were explored as new tubulin polymerization destabilizers to arrest tumor cell mitosis. A series of compounds incorporating the tetrahydrobenzo[b]thiophene scaffold were synthesized, and their biological activities were investigated. The cytotoxicity of each of the synthesized compounds was assessed against a range of cell lines. Specifically, the benzyl urea tetrahydrobenzo[b]thiophene derivative, 1-benzyl-3-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)urea (BU17), was identified as the most potent compound with broad-spectrum antitumor activity against several cancer cell lines. The potential mechanism(s) of action were investigated where dose-dependent G2/M accumulation and A549 cell cycle arrest were detected. Additionally, A549 cells treated with BU17 expressed enhanced levels of caspase 3 and 9, indicating the induction of apoptosis. Furthermore, it was found that BU17 inhibits WEE1 kinase and targets tubulin by blocking its polymerization. BU17 was also formulated into PLGA nanoparticles, and it was demonstrated that BU17-loaded nanoparticles could significantly enhance antitumor activity compared to the soluble counterpart.

5.
Eur J Med Chem ; 156: 641-651, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30031975

RESUMO

The thiadiazole scaffold is an important core moiety in a variety of clinical drug candidates targeting a range of diseases. For example, the 2,4,5-substituted 1,3,4-thiadiazole scaffold is present in a lead compound and at least two clinical candidates targeting the human motor protein Eg5, against neoplastic diseases. An inhibitor named K858 has in vivo activity in various mouse xenografts whereas the clinical candidates (S)-ARRY-520 and (R)-Litronesib have entered clinical trials with the former one in phase III clinical trials either alone or in combination with a proteasome inhibitor against relapsed/refractory multiple myeloma. Astonishingly, structural data are lacking for all thiadiazole-containing Eg5 inhibitors. Here we report the structure determination of two crystal forms of the ternary Eg5-ADP-K858 complex, locking the motor in the so-called final inhibitor bound state, thus blocking ADP release, a crucial stage for Eg5 activity. K858 acts at the established allosteric inhibitor-binding pocket formed of helix α2, loop L5 and helix α3. The structure of the complex has far reaching consequences for thiadiazole containing Eg5 inhibitors. For example, we could rationalise the structure-activity relationship in the crucial 5-position of the thiadiazole scaffold and the complex will serve in the future as a basis for strucutre-based drug design.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinesinas/antagonistas & inibidores , Tiadiazóis/química , Tiadiazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinesinas/química , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
Oncotarget ; 6(11): 9327-40, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25871386

RESUMO

Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined. Using concentrations of inhibitors that did not induce severe mitotic defects on their own, we found that both the metaphase arrest and mitotic slippage induced by inhibitors targeting Aurora A and Aurora B (MK-5108 and Barasertib respectively) were enhanced by a PLK1 inhibitor (BI 2536). We found that PLK1 is overexpressed in cells from nasopharyngeal carcinoma, a highly invasive cancer with poor prognosis, in comparison to normal nasopharyngeal epithelial cells. Nasopharyngeal carcinoma cells were more sensitive to BI 2536 as a single agent and co-inhibition with Aurora kinases than normal cells. These observations underscore the mechanism and potential benefits of targeting PLK1 and Aurora kinases to induce mitotic catastrophe in cancer cells.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Ácidos Cicloexanocarboxílicos/farmacologia , Mitose/efeitos dos fármacos , Organofosfatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Quinazolinas/farmacologia , Tiazóis/farmacologia , Animais , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Carcinoma , Sinergismo Farmacológico , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Células Tumorais Cultivadas , Quinase 1 Polo-Like
7.
Eur J Pharmacol ; 723: 141-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333214

RESUMO

The purpose of this study was to identify conditions that increase the sensitivity of resistant cancer cells to antimitotic drugs. Using MTS assays, microscopic observation, assessment of cleaved PARP, FACS analysis, and Hoechst staining, we found that the c-Jun N-terminal kinase (Jnk) inhibitor SP600125 (SP) sensitized the antimitotic drug-resistant KBV20C cancer cell line. The sensitization mechanism was independent of p-glycoprotein (P-gp) inhibition. Interestingly, SP-induced sensitization was greater in resistant KBV20C cancer cells than in KB parent cells. The mechanism of SP-induced sensitization involved G2 arrest. KBV20C cells treated with SP and antimitotic drugs were more sensitized than cells treated with SP alone. This suggests that SP can restore sensitization for antimitotic drugs in resistant cancer cells. Our findings may contribute to the development of SP-based combination therapies for patients receiving anti-cancer agents that target microtubules.


Assuntos
Antracenos/farmacologia , Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
8.
J Biomol Screen ; 18(9): 1062-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23788527

RESUMO

Cancer cells can be drug resistant due to genetic variation at multiple steps in the drug response pathway, including drug efflux pumping, target mutation, and blunted apoptotic response. These are not discriminated by conventional cell survival assays. Here, we report a rapid and convenient high-content cell-imaging assay that measures multiple physiological changes in cells responding to antimitotic small-molecule drugs. Our one-step, no-wash assay uses three dyes to stain living cells and is much more accurate for scoring weakly adherent mitotic and apoptotic cells than conventional antibody-based assays. We profiled responses of 33 cell lines to 8 antimitotic drugs at multiple concentrations and time points using this assay and deposited our data and assay protocols into a public database (http://lincs.hms.harvard.edu/). Our data discriminated between alternative mechanisms that compromise drug sensitivity to paclitaxel and revealed an unexpected bell-shaped dose-response curve for BI2536, a highly selective inhibitor of Polo-like kinases. Our approach can be generalized, is scalable, and should therefore facilitate identification of molecular biomarkers for mechanisms of drug insensitivity in high-throughput screens and other assays.


Assuntos
Antimitóticos/farmacologia , Descoberta de Drogas , Imagem Molecular/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Antimitóticos/química , Apoptose/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Corantes Fluorescentes , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Paclitaxel/química , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA