Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
2.
J Cell Mol Med ; 28(4): e18128, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332508

RESUMO

Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.


Assuntos
Metiltransferases , RNA , Masculino , Humanos , Metiltransferases/genética , Espermatogênese/genética , Reprodução/genética , Genitália
3.
J Gene Med ; 26(1): e3583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640479

RESUMO

BACKGROUND: Although defects in sperm morphology and physiology lead to male infertility, in many instances, the exact disruption of molecular pathways in a given patient is often unknown. The glycolytic pathway is an essential process to supply energy in sperm cell motility. Enolase 4 (ENO4) is crucial for the glycolytic process, which provides the energy for sperm cells in motility. ENO4 is located in the sperm principal piece and is essential for the motility and organization of the sperm flagellum. In the present study, we characterized a family with asthenozoospermia and abnormal sperm morphology as a result of a variant in the enolase 4 (ENO4) gene. METHODS: Computer-assisted semen analysis, papanicolaou smear staining and scanning electron microscopy were used to examine sperm motility and morphology for semen analysis in patients. For genetic analysis, whole-exome sequencing followed by Sanger sequencing was performed. RESULTS: Two brothers in a consanguineous family were being clinically investigated for sperm motility and morphology issues. Genetic analysis by whole-exome sequencing revealed a homozygous variant [c.293A>G, p.(Lys98Arg)] in the ENO4 gene that segregated with infertility in the family, shared by affected but not controls. CONCLUSIONS: In view of the association of asthenozoospermia and abnormal sperm morphology in Eno4 knockout mice, we consider this to be the first report describing the involvement of ENO4 gene in human male infertility. We also explore the possible involvement of another variant in explaining other phenotypic features in this family.


Assuntos
Astenozoospermia , Infertilidade Masculina , Camundongos , Animais , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo
4.
BMC Microbiol ; 24(1): 22, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225541

RESUMO

BACKGROUND: Identification of intestinal flora composition is significant for exploring the cause and pathogenic mechanisms of the gut-testis axis and clarifying the relationship between microbiota and infertility. Our study aimed to examine the alternation in gut microbiota composition and identify potential microbes associated with development of Asthenozoospermia (AS). METHOD: A total of 580 males were recruited in the outpatient department of Tianjin Medical University General Hospital between September 2021 and March 2023. Sperm parameters were analyzed according to the WHO laboratory manual. The 16 S rRNA gene high-throughput sequencing was performed to detect the gut microbiota composition in fecal samples. LEfSe analysis was used to screen key microbiota. PICRUSt2 software was utilized to predict relevant pathways. RESULTS: After rigorous screening, 60 isolated AS patients (AS group) and 48 healthy men (NC group) were enrolled. No significant differences were observed in demographic characteristics (p > 0.05), semen volume (p = 0.718), sperm concentration (p = 0.109), or total sperm count (p = 0.200). Sperm total motility and progressive motility were significantly decreased in the AS group (p < 0.001). AS patients had significantly lower alpha diversity indices (Chao1, observed OTUs, and PD Whole-tree; p < 0.05). The beta-diversity of gut microbiota in AS patients significantly differed from NC men (PCoA analysis, p = 0.001). Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteria were the primary phyla, with the dominant genera including Bacteroides, Prevotella, and Blautia. Eleven key genera such as Escherichia_Shigella and Prevotellaceae_UCG_001 were identified by LEfSe analysis. Most of these genera were negatively correlated with sperm mobility. Eighty-eight KEGG pathways, including steroid biosynthesis and meiosis, were significantly enriched between the two groups. CONCLUSIONS: It appears that gut microbiota composition in AS patients significantly differed from that in healthy men, and the development of AS might be associated with intestinal flora dysbiosis.


Assuntos
Astenozoospermia , Microbioma Gastrointestinal , Humanos , Masculino , Microbioma Gastrointestinal/genética , Projetos Piloto , Sêmen , Bacteroidetes/genética , Disbiose/microbiologia , China , RNA Ribossômico 16S/genética
5.
Clin Genet ; 105(2): 220-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950557

RESUMO

Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.


Assuntos
Axonema , Infertilidade Masculina , Masculino , Humanos , Axonema/genética , Mutação , Sêmen , Cauda do Espermatozoide , Infertilidade Masculina/genética , Espermatozoides , Flagelos , Proteínas Associadas aos Microtúbulos/genética , Dineínas/genética
6.
Clin Genet ; 106(4): 437-447, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221575

RESUMO

Male infertility due to asthenozoospermia is quite frequent, but its etiology is poorly understood. We recruited two infertile brothers, born to first-cousin parents from Pakistan, displaying idiopathic asthenozoospermia with mild stuttering disorder but no ciliary-related symptoms. Whole-exome sequencing identified a splicing variant (c.916+1G>A) in ARMC3, recessively co-segregating with asthenozoospermia in the family. The ARMC3 protein is evolutionarily highly conserved and is mostly expressed in the brain and testicular tissue of human. The ARMC3 splicing mutation leads to the exclusion of exon 8, resulting in a predicted truncated protein (p.Glu245_Asp305delfs*16). Quantitative real-time PCR revealed a significant decrease at mRNA level for ARMC3 and Western blot analysis did not detect ARMC3 protein in the patient's sperm. Individuals homozygous for the ARMC3 splicing variant displayed reduced sperm motility with frequent morphological abnormalities of sperm flagella. Transmission electron microscopy of the affected individual IV: 2 revealed vacuolation in sperm mitochondria at the midpiece and disrupted flagellar ultrastructure in the principal and end piece. Altogether, our results indicate that this novel homozygous ARMC3 splicing mutation destabilizes sperm flagella and leads to asthenozoospermia in our patients, providing a novel marker for genetic counseling and diagnosis of male infertility.


Assuntos
Astenozoospermia , Consanguinidade , Homozigoto , Linhagem , Splicing de RNA , Cauda do Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patologia , Sequenciamento do Exoma , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Splicing de RNA/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Espermatozoides/ultraestrutura , Espermatozoides/patologia
7.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38335261

RESUMO

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Assuntos
Astenozoospermia , Canais de Cálcio , Vesículas Extracelulares , Sêmen , Motilidade dos Espermatozoides , Humanos , Masculino , Astenozoospermia/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Peptídeos/metabolismo , Peptídeos/farmacologia , Sêmen/química , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
8.
Eur J Clin Invest ; : e14289, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046266

RESUMO

BACKGROUND: Infertility is a major health issue, affecting 15% of reproductive-age couples with male factors contributing to 50% of cases. Asthenozoospermia (AS), or low sperm motility, is a common cause of male infertility with complex aetiology, involving genetic and metabolic alterations, inflammation and oxidative stress. However, the molecular mechanisms behind low motility are unclear. In this study, we used a metabolomics approach to identify metabolic biomarkers and pathways involved in sperm motility. METHODS: We compared the metabolome and lipidome of spermatozoa of men with normozoospermia (n = 44) and AS (n = 22) using untargeted LC-MS and the metabolome of seminal fluid using 1H-NMR. Additionally, we evaluated the seminal fluid redox status to assess the oxidative stress in the ejaculate. RESULTS: We identified 112 metabolites and 209 lipids in spermatozoa and 27 metabolites in the seminal fluid of normozoospermic and asthenozoospermic men. PCA analysis of the spermatozoa's metabolomics and lipidomics data showed a clear separation between groups. Spermatozoa of asthenozoospermic men presented lower levels of several amino acids, and increased levels of energetic substrates and lysophospholipids. However, the metabolome and redox status of the seminal fluid was not altered inAS. CONCLUSIONS: Our results indicate impaired metabolic pathways associated with redox homeostasis and amino acid, energy and lipid metabolism in AS. Taken together, these findings suggest that the metabolome and lipidome of human spermatozoa are key factors influencing their motility and that oxidative stress exposure during spermatogenesis or sperm maturation may be in the aetiology of decreased motility in AS.

9.
Mol Divers ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259422

RESUMO

The global decline in sperm quality in men is closely associated with environmental exposure to the plasticizer Di-(2-ethylhexyl) phthalate (DEHP), but the molecular mechanisms underlying its induction of asthenozoospermia (AZS) remain incompletely understood. By integrating the toxicological targets of DEHP and differential genes in AZS patients, and combining machine learning, molecular docking, and dynamics simulations, this study successfully identified hub genes and signaling pathways induced by DEHP in AZS, aiming to provide new strategies for the prevention and treatment of this disease. A total of 26 toxicological targets were identified, with FGFR1, MMP7, and ST14 clearly defined as playing crucial regulatory roles in DEHP-induced AZS. This study also reveals that DEHP may induce reproductive system inflammation, affecting the proliferation and survival of reproductive cells, and subsequently impacting sperm vitality, possibly through regulating the mTORC1 pathway, TNF-α signaling via the NF-κB pathway, and MYC targets v1 pathway. Furthermore, changes in the immune microenvironment revealed the significant impact of immune status on testicular function. In conclusion, this study provides important scientific evidence for understanding the molecular mechanisms of AZS and developing prevention and treatment strategies based on toxicological targets.

10.
Cell Mol Life Sci ; 80(6): 152, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198331

RESUMO

The sperm flagellum is a specialized type of motile cilium composed of a typical "9 + 2" axonemal structure with peri-axonemal structures, such as outer dense fibers (ODFs). This flagellar arrangement is crucial for sperm movement and fertilization. However, the association of axonemal integrity with ODFs remains poorly understood. Here, we demonstrate that mouse BBOF1 could interact with both MNS1, an axonemal component, and ODF2, an ODF protein, and is required for sperm flagellar axoneme maintenance and male fertility. BBOF1 is expressed exclusively in male germ cells from the pachytene stage onwards and is detected in sperm axoneme fraction. Spermatozoa derived from Bbof1-knockout mice exhibit a normal morphology, however, reduced motility due to the absence of certain microtubule doublets, resulting in the failure to fertilize mature oocytes. Furthermore, BBOF1 is found to interact with ODF2 and MNS1 and is also required for their stability. Our findings in mice suggest that Bbof1 could also be essential for human sperm motility and male fertility, thus is a novel potential candidate gene for asthenozoospermia diagnosis.


Assuntos
Axonema , Infertilidade Masculina , Animais , Masculino , Camundongos , Axonema/metabolismo , Fertilidade/genética , Proteínas de Choque Térmico/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
11.
BMC Urol ; 24(1): 180, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192248

RESUMO

BACKGROUND: Male infertility due to spermatogenesis defects affects millions of men worldwide. However, the genetic etiology of the vast majority remains unclear. The present study was undertaken to assess the association of DNAH6 and ATPase6 genes in asthenozoospermia patients in the northern region of India. METHODS: A total of 60 semen samples were collected for the study, of which 30 were from the case group and 30 were from the control group. The semen samples for the case group (asthenozoospermia) and control groups were collected from IVF and Reproductive Biology Centre, Maulana Azad Medical College, New Delhi. Sperm count and motility were classified as per World Health Organization (WHO 2021) protocol. A total genomic DNA was extracted as per the stranded TRIZOL method with little modification. RESULTS: In-vitro molecular characterizations of DNAH6 and ATPase6 genes in both groups were checked by Polymerase Chain Reaction (PCR). The 675 bp and 375 bp amplicons were amplified using PCR for ATPase6 and DNAH6 genes. Our study results showed a significant (P ≤ 0.05) null deletion of DNAH6 and ATPase6 genes in asthenozoospermia patients as compared to the control. We found the significant null deletion of DNAH6 in case 45.0%, and the control group was 11.7%. However, in the case of APTase6, it was 26.7% and 10.0%, respectively. CONCLUSIONS: Our study concluded that the presence of DHAH6 and ATPase6 genes had a significant impact on male infertility.


Assuntos
Astenozoospermia , Humanos , Masculino , Astenozoospermia/genética , Índia , Adulto , ATPases Mitocondriais Próton-Translocadoras/genética , DNA Mitocondrial/genética
12.
J Assist Reprod Genet ; 41(6): 1481-1484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676841

RESUMO

In a recent journal article, Chen et al. identified a germ cell-specific cofactor, STYXL1, associated with male fertility function. Deletion of STYXL1 prevents the LEGO player CCT complex from properly folding key microtubule proteins of the sperm flagellum, which affects sperm motility and male fertility function.


Assuntos
Infertilidade Masculina , Motilidade dos Espermatozoides , Masculino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Motilidade dos Espermatozoides/genética , Espermatozoides , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-39190228

RESUMO

PURPOSE: The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS: Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS: Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION: These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.

14.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612930

RESUMO

Infertility is a global health challenge that affects an estimated 72.4 million people worldwide. Between 30 and 50% of these cases involve male factors, showcasing the complex nature of male infertility, which can be attributed to both environmental and genetic determinants. Asthenozoospermia, a condition characterized by reduced sperm motility, stands out as a significant contributor to male infertility. This study explores the involvement of the mitochondrial oxidative phosphorylation (OXPHOS) system, crucial for ATP production and sperm motility, in asthenozoospermia. Through whole-genome sequencing and in silico analysis, our aim was to identify and characterize OXPHOS gene variants specific to individuals with asthenozoospermia. Our analysis identified 680,099 unique variants, with 309 located within OXPHOS genes. Nine of these variants were prioritized due to their significant implications, such as potential associations with diseases, effects on gene expression, protein function, etc. Interestingly, none of these variants had been previously associated with male infertility, opening up new avenues for research. Thus, through our comprehensive approach, we provide valuable insights into the genetic factors that influence sperm motility, laying the foundation for future research in the field of male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Masculino , Humanos , Astenozoospermia/genética , Fosforilação Oxidativa , Motilidade dos Espermatozoides/genética , Infertilidade Masculina/genética , Sequenciamento Completo do Genoma
15.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338962

RESUMO

Phosphorus-containing metabolites occupy a prominent position in cell pathways. The phosphorometabolomic approach in human sperm samples will deliver valuable information as new male fertility biomarkers could emerge. This study analyzed, by 31P-NMR, seminal plasma and whole semen from asthenozoospermic and normozoospermic samples (71% vs. 27% and 45% vs. 17%, total and progressive sperm motility, respectively), and also ejaculates from healthy donors. At least 16 phosphorus-containing metabolites involved in central energy metabolism and phospholipid, nucleotide, and nicotinamide metabolic pathways were assigned and different abundances between the samples with distinct sperm quality was detected. Specifically, higher levels of phosphocholine, glucose-1-phosphate, and to a lesser degree, acetyl phosphate were found in the asthenozoospermic seminal plasma. Notably, the phosphorometabolites implicated in lipid metabolism were highlighted in the seminal plasma, while those associated with carbohydrate metabolism were more abundant in the spermatozoa. Higher levels of phosphocholine, glucose-1-phosphate, and acetyl phosphate in the seminal plasma with poor quality suggest their crucial role in supporting sperm motility through energy metabolic pathways. In the seminal plasma, phosphorometabolites related to lipid metabolism were prominent; however, spermatozoa metabolism is more dependent on carbohydrate-related energy pathways. Understanding the presence and function of sperm phosphorylated metabolites will enhance our knowledge of the metabolic profile of healthy human sperm, improving assessment and differential diagnosis.


Assuntos
Astenozoospermia , Organofosfatos , Sêmen , Humanos , Masculino , Sêmen/metabolismo , Fosforilcolina/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Astenozoospermia/metabolismo , Fósforo/metabolismo , Análise do Sêmen
16.
Zhonghua Nan Ke Xue ; 30(3): 199-208, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-39177385

RESUMO

OBJECTIVE: To explore the potential impact of lipid metabolism-related single nucleotide polymorphisms (SNP) on semen quality in men. METHODS: We selected 284 semen samples from Xingtai Infertility Hospital and Hebei Human Sperm Bank collected between February and October 2023, 33 from oligozoospermia (OS), 97 from asthenozoospermia (AS) and 54 from oligoasthenozoospermia (OAS) patients and the other 100 from normal men. We performed computer-assisted semen analysis (CASA) of the samples, extracted blood DNA and, using the MassARRAY System, genotyped the target genes, determined the genotypes of 13 SNPs and compared their distribution, their correlation with BMI and semen quality in different groups. RESULTS: The mutant homozygous (TT) genotype of the FADS2 rs2727270 gene seemed to be a risk factor for AS (OR = 4.420, P= 0.047), while the APOA2 rs5082-A allele and MC4R rs17782313 heterozygous (TC) genotype important protective factors for OS (OR = 0.422 and 0.389; P= 0.045 and 0.043, respectively). A significantly higher sperm concentration was found associated with the MC4R rs17782313 heterozygous (TC) genotype than with the homozygous (CC) genotype. Stratification analysis showed that the protective effect of the TC genotype was decreased with increased BMI and remained with the interaction of the rs5082 and rs17782313 genotypes. CONCLUSION: FADS2 rs2727270, APOA2 rs5082 and MC4R rs17782313 were significantly correlated with the risk of abnormal semen parameters.


Assuntos
Genótipo , Metabolismo dos Lipídeos , Polimorfismo de Nucleotídeo Único , Análise do Sêmen , Humanos , Masculino , Metabolismo dos Lipídeos/genética , Astenozoospermia/genética , Ácidos Graxos Dessaturases/genética , Oligospermia/genética , Infertilidade Masculina/genética , Alelos , Adulto , Contagem de Espermatozoides , Fatores de Risco , Espermatozoides/metabolismo
17.
Zhonghua Nan Ke Xue ; 30(1): 18-25, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-39046409

RESUMO

OBJECTIVE: To explore the expressions of zinc homeostasis-related proteins, G protein-coupled receptor 39 (GPR39) and ANO1 mRNA in the sperm of patients with asthenozoospermia (AS), and analyze their correlation with sperm motility. METHODS: We collected semen samples from 82 male subjects with PR+NP < 40%, PR < 32% and sperm concentration > 15×106/ml (the AS group, n = 40) or PR+NP ≥ 40%, PR ≥ 32% and sperm concentration > 15×106/ml (the normal control group, n = 42). We analyzed the routine semen parameters and measured the zinc content in the seminal plasma using the computer-assisted sperm analysis system, detected the expressions of zinc transporters (ZIP13, ZIP8 and ZNT10), metallothioneins (MT1G, MT1 and MTF), GPR39, and calcium-dependent chloride channel protein (ANO1) in the sperm by real-time quantitative PCR (RT qPCR), examined free zinc distribution in the sperm by laser confocal microscopy, and determined the expressions of GPR39 and MT1 proteins in the sperm by immunofluorescence staining, followed by Spearman rank correlation analysis of their correlation with semen parameters. RESULTS: There was no statistically significant difference in the zinc concentration in the seminal plasma between the AS and normal control groups (P>0.05). Compared with the controls, the AS patients showed a significantly reduced free zinc level (P<0.05), relative expressions of MT1G, MTF, ZIP13, GPR39 and ANO1 mRNA (P<0.05), and that of the GPR39 protein in the AS group (P<0.05). No statistically significant differences were observed in the relative expression levels of ZIP8, ZNT10 and MT1 mRNA between the two groups (P>0.05). The relative expression levels of GPR39, ANO1, MT1G and MTF mRNA were positively correlated with sperm motility and the percentage of progressively motile sperm (P<0.05). CONCLUSION: The expressions of zinc homeostasis proteins (MT1G, MTF and ZIP13), GPR39 and ANO1 mRNA are downregulated in the sperm of asthenozoospermia patients, and positively correlated with sperm motility.


Assuntos
Anoctamina-1 , Astenozoospermia , Proteínas de Transporte de Cátions , RNA Mensageiro , Receptores Acoplados a Proteínas G , Motilidade dos Espermatozoides , Espermatozoides , Zinco , Humanos , Masculino , Astenozoospermia/metabolismo , Astenozoospermia/genética , Anoctamina-1/metabolismo , Anoctamina-1/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Zinco/metabolismo , Espermatozoides/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metalotioneína/metabolismo , Metalotioneína/genética , Homeostase , Adulto , Análise do Sêmen , Relevância Clínica , Proteínas de Neoplasias
18.
J Cell Mol Med ; 27(20): 3107-3116, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537752

RESUMO

Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive disease manifested with recurrent infections of respiratory tract and infertility. DNAAF3 is identified as a novel gene associated with PCD and different mutations in DNAAF3 results in different clinical features of PCD patients, such as situs inversus, sinusitis and bronchiectasis. However, the sperm phenotypic characteristics of PCD males are generally poorly investigated. Our reproductive medicine centre received a case of PCD patient with infertility, who presented with sinusitis, recurrent infections of the lower airway and severe asthenozoospermia; However, no situs inversus was found in the patient. A novel homozygous mutation in DNAAF3(c.551T>A; p.V184E) was identified in the PCD patient by whole-exome sequencing. Subsequent Sanger sequencing further confirmed that the DNAAF3 had a homozygous missense variant in the fifth exon. Transmission electron microscopy and immunostaining analysis of the sperms from the patient showed a complete absence of outer dynein arms and partial absence of inner dynein arms, which resulted in the reduction in sperm motility. However, this infertility was overcome by intracytoplasmic sperm injections, as his wife achieved successful pregnancy. These findings showed that the PCD-associated pathogenic mutation within DNAAF3 also causes severe asthenozoospermia and male infertility ultimately due to sperm flagella axoneme defect in humans. Our study not only contributes to understand the sperm phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis and therapy for infertile patient with PCD.

19.
Biol Reprod ; 109(3): 319-329, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37402702

RESUMO

Infertility is a public health concern worldwide. Asthenozoospermia is a common cause of male infertility and is characterized by decreased motility. Sperm motility ensures that sperm migrate to complete fertilization. Macrophages are an essential component of innate immunity in the female reproductive tract. Macrophage extracellular traps are induced by various microorganisms to capture and mediate the clearance of microorganisms. The relationship between sperm and macrophage extracellular traps is unclear. The human monocyte leukemia (THP-1) cells differentiated by phorbol myristate acetate (PMA) are widely used as surrogate of human macrophages. This study investigated sperm-induced macrophage extracellular trap formation and clarified some of the mechanisms affecting macrophage extracellular trap production. Sperm-induced macrophage extracellular traps were visualized and components of macrophage extracellular traps were identified by immunofluorescence analyses and scanning electron microscopy. By inhibiting macrophage extracellular trap production and macrophage phagocytosis, the relationship between macrophage phagocytosis and macrophage extracellular trap production was analyzed. Sperm could trigger PMA-differentiated THP-1 macrophages to produce extracellular traps. Sperm-triggered macrophage extracellular traps are dependent on phagocytosis and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Sperm from asthenozoospermia donors are more likely to be phagocytosed by macrophages than sperm from healthy donors, which induce more macrophage extracellular trap release. These data confirm the phenomenon and partial mechanism of sperm-induced macrophage extracellular trap formation in vitro. These may partly provide evidence to explain the mechanisms of clearing abnormally morphological or hypomotile sperm in the female reproductive tract and the rationale for the decreased probability of successful fertilization in asthenozoospermia.


Assuntos
Astenozoospermia , Armadilhas Extracelulares , Masculino , Feminino , Humanos , Motilidade dos Espermatozoides , Sêmen , Macrófagos , Fagocitose , Espermatozoides
20.
Cell Tissue Res ; 392(3): 793-810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847810

RESUMO

Asthenozoospermia, characterized by low sperm motility, is one of the most common causes of male infertility. While many intrinsic and extrinsic factors are involved in the etiology of asthenozoospermia, the molecular basis of this condition remains unclear. Since sperm motility results from a complex flagellar structure, an in-depth proteomic analysis of the sperm tail can uncover mechanisms underlying asthenozoospermia. This study quantified the proteomic profile of 40 asthenozoospermic sperm tails and 40 controls using TMT-LC-MS/MS. Overall, 2140 proteins were identified and quantified where 156 proteins have not been described earlier in sperm tail. There were 409 differentially expressed proteins (250 upregulated and 159 downregulated) in asthenozoospermia which by far is the highest number reported earlier. Further, bioinformatics analysis revealed several biological processes, including mitochondrial-related energy production, oxidative phosphorylation (OXPHOS), citric acid cycle (CAC), cytoskeleton, stress response, and protein metabolism altered in asthenozoospermic sperm tail samples. Collectively, our findings reveal the importance of mitochondrial energy production and induced stress response as potential mechanisms involved in the loss of sperm motility in asthenozoospermia.


Assuntos
Astenozoospermia , Cauda do Espermatozoide , Humanos , Masculino , Cauda do Espermatozoide/metabolismo , Astenozoospermia/genética , Astenozoospermia/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Proteômica/métodos , Cromatografia Líquida , Sêmen/metabolismo , Espectrometria de Massas em Tandem , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA