Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 815, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210263

RESUMO

BACKGROUND: The DELLA proteins, a class of GA signaling repressors, belong to the GRAS family of plant-specific nuclear proteins. Members of DELLA gene family encode transcriptional regulators with diverse functions in plant development and abiotic stress responses. To date, DELLAs have been identified in various plant species, such as Arabidopsis thaliana, Malus domestica, Populus trichocarpa, and other land plants. Most information of DELLA family genes was obtained from A. thaliana, whereas little is known about the DELLA gene family in blueberry. RESULTS: In this study, we identified three DELLA genes in blueberry (Vaccinium darrowii, VdDELLA) and provided a complete overview of VdDELLA gene family, describing chromosome localization, protein properties, conserved domain, motif organization, and phylogenetic analysis. Three VdDELLA members, containing two highly conserved DELLA domain and GRAS domain, were distributed across three chromosomes. Additionally, cis-acting elements analysis indicated that VdDELLA genes might play a critical role in blueberry developmental processes, hormone, and stress responses. Expression analysis using quantitative real-time PCR (qRT-PCR) revealed that all of three VdDELLA genes were differentially expressed across various tissues. VdDELLA2 was the most highly expressed VdDELLA in all denoted tissues, with a highest expression in mature fruits. In addition, all of the three VdDELLA genes actively responded to diverse abiotic stresses. Based on qRT-PCR analysis, VdDELLA2 might act as a key regulator in V. darrowii in response to salt stress, whereas VdDELLA1 and VdDELLA2 might play an essential role in cold stress response. Under drought stress, all of three VdDELLA genes were involved in mediating drought response. Furthermore, their transiently co-localization with nuclear markers in A. thaliana protoplasts demonstrated their transcriptional regulator roles. CONCLUSIONS: In this study, three VdDELLA genes were identified in V. darrowii genome. Three VdDELLA genes were closely related to the C. moschata DELLA genes, S. lycopersicum DELLA genes, and M. domestica DELLA genes, respectively, indicating their similar biological functions. Expression analysis indicated that VdDELLA genes were highly efficient in blueberry fruit development. Expression patterns under different stress conditions revealed the differentially expressed VdDELLA genes responding to salt, drought, and cold stress. Overall, these results enrich our understanding of evolutionary relationship and potential functions of VdDELLA genes, which provide valuable information for further studies on genetic improvement of the plant yield and plant resistance.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Mirtilos Azuis (Planta)/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
2.
BMC Genomics ; 25(1): 434, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693497

RESUMO

BACKGROUND: WOX genes are a class of plant-specific transcription factors. The WUSCHEL-related homeobox (WOX) family is a member of the homeobox transcription factor superfamily. Previous studies have shown that WOX members play important roles in plant growth and development. However, studies of the WOX gene family in blueberry plants have not been reported. RESULTS: In order to understand the biological function of the WOX gene family in blueberries, bioinformatics were used methods to identify WOX gene family members in the blueberry genome, and analyzed the basic physical and chemical properties, gene structure, gene motifs, promoter cis-acting elements, chromosome location, evolutionary relationships, expression pattern of these family members and predicted their functions. Finally, 12 genes containing the WOX domain were identified and found to be distributed on eight chromosomes. Phylogenetic tree analysis showed that the blueberry WOX gene family had three major branches: ancient branch, middle branch, and WUS branch. Blueberry WOX gene family protein sequences differ in amino acid number, molecular weight, isoelectric point and hydrophobicity. Predictive analysis of promoter cis-acting elements showed that the promoters of the VdWOX genes contained abundant light response, hormone, and stress response elements. The VdWOX genes were induced to express in both stems and leaves in response to salt and drought stress. CONCLUSIONS: Our results provided comprehensive characteristics of the WOX gene family and important clues for further exploration of its role in the growth, development and resistance to various stress in blueberry plants.


Assuntos
Mirtilos Azuis (Planta) , Filogenia , Regiões Promotoras Genéticas , Mirtilos Azuis (Planta)/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Evolução Molecular , Biologia Computacional/métodos
3.
BMC Plant Biol ; 24(1): 184, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475704

RESUMO

Using the blueberry cultivar "Powderblue" after pollination, fruits at different developmental stages were collected for study. The transverse and longitudinal diameters, individual fruit weight, and fruit water content were measured during their development. Employing tissue sectioning and microscopy techniques, we systematically studied the morphological features and anatomical structures of the fruits and seeds at various developmental stages, aiming to elucidate the cytological patterns during blueberry fruit development. The results of our study revealed that the "Powderblue" blueberry fruit growth and development followed a double "S" curve. Mature "Powderblue" blueberries were blue-black in color, elliptical in shape, with five locules, an inferior ovary, and an average fruit weight of 1.73 ± 0.17 g, and a moisture content of 78.865 ± 0.9%. Blueberry fruit flesh cells were densely arranged with no apparent intercellular spaces, and mesocarp cells accounted for 52.06 ± 7.4% of fruit cells. In the early fruit development stages, the fruit flesh cells were rapidly dividing, significantly increasing in number but without greatly affecting the fruit's morphological characteristics. During the later stages of fruit development, the expansion of the fruit flesh cells became prominent, resulting in a noticeable increase in the fruit's dimensions. Except for the epidermal cells, cells in all fruit tissues showed varying degrees of rupture as fruit development progressed, with the extent of cell rupture increasing, becoming increasingly apparent as the fruit gradually softened. Additionally, numerous brachysclereids (stone cells) appeared in the fruit flesh cells. Stone cells are mostly present individually in the fruit flesh tissue, while in the placental tissue, they often group together. The "Powderblue" blueberry seeds were light brown, 4.13 ± 0.42 mm long, 2.2 ± 0.14 mm wide, with each fruit containing 50-60 seeds. The "Powderblue" seeds mainly consisted of the seed coat, endosperm, and embryo. The embryo was located at the chalazal end in the center of the endosperm and was spatially separated. The endosperm, occupying the vast majority of the seed volume, comprised both the chalazal and outer endosperm, and the endosperm developed and matured before the embryo. As the seed developed, the seed coat was gradually lignified and consisted of palisade-like stone cells externally and epidermal layer cells internally.


Assuntos
Mirtilos Azuis (Planta) , Frutas , Gravidez , Feminino , Humanos , Mirtilos Azuis (Planta)/química , Placenta , Sementes , Endosperma
4.
Planta ; 259(4): 77, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421445

RESUMO

MAIN CONCLUSION: The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/genética , Filogenia , Reprodução , Flores/genética , Duplicação Gênica
5.
Plant Biotechnol J ; 22(2): 386-400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797061

RESUMO

Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.


Assuntos
Arabidopsis , Mirtilos Azuis (Planta) , MicroRNAs , Frutas/genética , Frutas/metabolismo , Antocianinas , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Arch Microbiol ; 206(5): 235, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722413

RESUMO

In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.


Assuntos
Mirtilos Azuis (Planta) , Fusarium , Doenças das Plantas , Raízes de Plantas , Schizophyllum , Mirtilos Azuis (Planta)/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Fusarium/fisiologia , Schizophyllum/metabolismo , Schizophyllum/crescimento & desenvolvimento , Antibiose , Hifas/crescimento & desenvolvimento , Agentes de Controle Biológico , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
7.
Arch Microbiol ; 206(2): 86, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302781

RESUMO

Dark septate endophytes (DSEs) inhabit plant roots and soil in ecosystems and host plants worldwide. DSE colonization is influenced by cultivars, soil factors, and specific habitat conditions. The regular diversity of DSEs in blueberries in Guizhou, China, is still unclear. In this study, four cultivars (Gardenblue, Powderblue, O'Neal, and Legacy) in three areas (Gaopo, Majiang, and Fenggang) in Guizhou were used to identify DSEs by morphological and molecular biological methods and to clarify the relationship between DSE diversity and DSE colonization and soil factors of cultivated blueberries in Guizhou. The DSEs isolated from cultivated blueberry roots in 3 areas in Guizhou Province were different, belonging to 17 genera, and the dominant genera were Penicillium, Phialocephala, and Thozetella. DSEs isolated from Majiang belonged to 12 genera and 16 species, those from Gaopo belonged to 7 genera and 15 species, and those from Fenggang belonged to 5 genera and 7 species. Among the different blueberry varieties, 11 genera were isolated from O'Neal, 12 genera were isolated from Powderblue, 11 genera were isolated from Legacy and 13 genera were isolated from Gardenblue. Coniochaeta is endemic to O'Neal, Chaetomium and Curvularia are endemic to Powderblue, and Thielavia is endemic to Legacy. Correlation analysis showed that DSE diversity was significantly correlated with DSE colonization and soil factors.


Assuntos
Ascomicetos , Mirtilos Azuis (Planta) , Micorrizas , Ecossistema , Solo , Raízes de Plantas/microbiologia , Endófitos/genética
8.
Microb Cell Fact ; 23(1): 228, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143478

RESUMO

BACKGROUND: Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. RESULTS: In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. CONCLUSIONS: We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Saccharomyces cerevisiae , Antocianinas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Engenharia Metabólica/métodos , Vias Biossintéticas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Phytopathology ; 114(5): 869-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38557216

RESUMO

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Assuntos
Insetos Vetores , Doenças das Plantas , Xylella , Xilema , Xylella/fisiologia , Xylella/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xilema/microbiologia , Animais , Insetos Vetores/microbiologia , Olea/microbiologia , Insetos/microbiologia , Estados Unidos , Vitis/microbiologia
10.
Phytother Res ; 38(2): 646-661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37963472

RESUMO

Blueberries and cranberries are berry fruits with the highest number of randomized clinical trials (RCTs) focusing on blood pressure (BP). This systematic review and meta-analysis of RCTs analyzed the effects of blueberry and cranberry supplementation alone and in concert with systolic BP (SBP) and diastolic BP (DBP) in patients with cardiometabolic diseases. The searches were performed until August 2023 in the following databases: PubMed, Scopus, Web of Science, Cochrane, and Embase. Studies that examined the effects of blueberry or cranberry intake/supplementation were included. The risk of bias was evaluated using the Rob 2 scale. A meta-analysis was performed to estimate the effects of blueberry and cranberry supplementation on BP levels in patients with cardiometabolic diseases. A total of 17 articles were included, from which two found significant results from blueberry and/or cranberry supplementation in reducing BP. Pooled results revealed statistically non-significant reductions of -0.81 mm Hg for SBP (95% confidence interval [CI]: -2.26, 0.63; I2 = 0%) and -0.15 mm Hg for DBP (95% CI: -1.36, 1.05; I2 = 27%). Blueberry and/or cranberry supplementation had neutral effects on SBP and DBP in patients with cardiometabolic diseases, regardless of duration or age. Further high-quality studies are needed to firmly establish clinical efficacy.


Assuntos
Mirtilos Azuis (Planta) , Doenças Cardiovasculares , Hipertensão , Vaccinium macrocarpon , Humanos , Pressão Sanguínea , Frutas , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Hipertensão/tratamento farmacológico
11.
Phytother Res ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140343

RESUMO

Although the gut microbiota and kynurenine (KYN) metabolism have significant protective effects against ischaemic stroke (IS), the exact mechanism has yet to be fully elucidated. Combined serum metabolomics and 16S rRNA gene sequencing were used to reveal the differences between the gut microbiota and metabolites in rats treated with or without blueberry extract. Faecal microbiota transplantation (FMT) was employed to validate the protective role of the gut microbiota in IS. Furthermore, the interaction between Prevotella and IS was also confirmed in patients. Rats with IS experienced neurological impairments accompanied by an impaired intestinal barrier and disturbed intestinal flora, which further contributed to heightened inflammatory responses. Furthermore, Prevotella played a critical role in IS pathophysiology, and a positive correlation between Prevotella and KYN was detected. The role of KYN metabolism in IS was further demonstrated by the finding that IDO was significantly upregulated and that the use of the IDO inhibitor, attenuated KYN metabolic pathway activity and ameliorated neurological damage in rats with IS. Prevotella intervention also significantly improved stroke symptoms and decreasing KYN levels in rats with IS. FMT showed that the beneficial effects of blueberry extract on IS involve gut bacteria, especially Prevotella, which were confirmed by microbiological analyses conducted on IS patients. Moreover, blueberry extract led to significant changes in kynurenic acid levels and tryptophan and IDO levels through interactions with Prevotella. Our study demonstrates for the first time that blueberry extract could modulate "intestinal microecology-KYN metabolism" to improve IS.

12.
Plant Dis ; 108(9): 2740-2749, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38616409

RESUMO

Crop declines have been observed in raspberry and blueberry farms in the southwest region of Spain, which is the most important berry-producing area in the country. This study aimed to identify and characterize the pathogens associated with these diseases using molecular and morphological methods. Additionally, pathogenicity tests were performed on different raspberry, blueberry, and strawberry cultivars to determine possible susceptible hosts in the area. An isolate of Phytophthora cactorum was obtained from a symptomatic strawberry plant, an isolate of P. cinnamomi was obtained from a symptomatic blueberry plant, and isolates identified as P. rosacearum, P. rubi, and a previously unknown species named P. balkanensis were recovered from symptomatic raspberry plants. Results from the pathogenicity tests reported, for the first time, P. rubi causing root rot and wilting complex in Spanish raspberry crops. Additionally, P. cinnamomi was found to affect highbush blueberry production in Spain. Thus, this study provides valuable insights into the identification and characterization of Phytophthora spp. associated with the decline of blueberry and raspberry crops in Huelva. It also provides essential recommendations regarding the potential risks associated with the use of other types of berries as rotational crops and emphasizes the necessity for effective management strategies to mitigate crop losses. This is particularly critical given the limited soil disinfection alternatives available in Spain.


Assuntos
Mirtilos Azuis (Planta) , Fragaria , Especificidade de Hospedeiro , Phytophthora , Doenças das Plantas , Rubus , Phytophthora/fisiologia , Espanha , Doenças das Plantas/microbiologia , Fragaria/microbiologia , Mirtilos Azuis (Planta)/microbiologia , Rubus/microbiologia , Produtos Agrícolas/microbiologia , Frutas/microbiologia
13.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673724

RESUMO

As a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.


Assuntos
Mirtilos Azuis (Planta) , Flavonoides , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Transcriptoma , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vias Biossintéticas/genética
14.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38928069

RESUMO

An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.


Assuntos
Mirtilos Azuis (Planta) , Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , AVC Isquêmico/patologia , Mirtilos Azuis (Planta)/química , Masculino , Modelos Animais de Doenças , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000087

RESUMO

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Micorrizas , Filogenia , Proteínas de Plantas , Transportadores de Sulfato , Micorrizas/genética , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/microbiologia , Mirtilos Azuis (Planta)/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Sulfatos/metabolismo , Simbiose/genética , Genoma de Planta
16.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892062

RESUMO

Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and ß-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.


Assuntos
Osso e Ossos , Suplementos Nutricionais , Alimento Funcional , Humanos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Osso e Ossos/efeitos dos fármacos , Osteoporose/prevenção & controle , Animais , Remodelação Óssea/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos
17.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338435

RESUMO

The blueberry, a deciduous shrub in the Ericaceae family, is celebrated for its delightful flavor, sweetness, and abundance of anthocyanins and antioxidants, qualities that have garnered significant attention for their potential health benefits. Blueberries grown in diverse environments and exhibit varied anthocyanin profiles, often influenced by factors such as altitude and climate. Varietal groups worldwide have been bred and categorized based on their growth habits and specific cold requirements, particularly with southern highbush cultivars thriving in temperate climates, demonstrating tolerance to higher altitudes or cooler climates-a result of hybridizations involving various Vaccinium species. In the Colombian Andes, southern highbush blueberries thrive in unique high-altitude conditions, leading to exceptional quality due to the region's cool climate and specific soil characteristics. In this context, this study aimed to chemically characterize and differentiate three southern highbush blueberry cultivars (i.e., 'Biloxi,' 'Legacy' and 'Sharpblue') cultivated in a Colombian Andean plateau and compare them to three commercially available highbush blueberries. This comprehensive evaluation involved examining total phenols, flavonoids, anthocyanin content, and DPPH· free-radical scavenging capacity, as well as conducting anthocyanin-targeted profiling via HPLC-DAD-HRMS. Through supervised multivariate analyses such as sPLS-DA, this study delved into the pattern recognition of those anthocyanins that could potentially serve as markers for quality and cultivar-related chemical trait determination. These findings locate blueberry-derived anthocyanins in a metabolic context and afford some insights into southern highbush blueberry cultivar differentiation to be used for further purposes.


Assuntos
Mirtilos Azuis (Planta) , Vaccinium , Antocianinas/análise , Mirtilos Azuis (Planta)/química , Colômbia , Frutas/química , Melhoramento Vegetal , Vaccinium/química , Antioxidantes/química
18.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893578

RESUMO

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Assuntos
Antocianinas , Antivirais , Mirtilos Azuis (Planta) , Proteases 3C de Coronavírus , Extratos Vegetais , Inibidores de Proteases , SARS-CoV-2 , Mirtilos Azuis (Planta)/química , Antocianinas/farmacologia , Antocianinas/química , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Glucosídeos
19.
J Sci Food Agric ; 104(2): 737-745, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37658664

RESUMO

BACKGROUND: Blueberries and apples exhibit favorable bioactivity and health benefits as a result of their rich phytochemicals. Natural phytochemicals exist in complex forms, but there are few reports on whether have additive, synergistic or antagonistic effects between different phytochemicals. The present study aimed to elucidate the synergistic effects of blueberry extract (BE) and apple peel extract (APE) together with respect to inhibiting the proliferation of HepG2 liver cancer cells. Meanwhile, phytochemical characterization of BE and APE was conducted by HPLC, and total antioxidant activity was determined via a cellular antioxidant activity assay, oxygen radical absorption capacity assay and peroxy radical scavenging capacity assay. RESULTS: The results showed that BE and APE were rich in phytochemicals and had potent antioxidant activities, which synergistically inhibited cell proliferation. In the bilateral combination, the dose reduction index value increased by two-fold, and the combination index value at 95% inhibition was less than 1. Additionally, BE + APE supplementation could promote the expression levels of p53 and c-myc genes. In conclusion, the BE and APE had strong antioxidant activity and exhibited synergistic inhibition against proliferation of HepG2 cells. CONCLUSION: The present study can provide a theoretical basis for the synergistic effect of different phytochemicals in health care. © 2023 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta) , Hominidae , Malus , Animais , Antioxidantes/química , Malus/química , Mirtilos Azuis (Planta)/metabolismo , Frutas/química , Extratos Vegetais/química , Compostos Fitoquímicos/química , Hominidae/metabolismo
20.
J Sci Food Agric ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985128

RESUMO

Blueberries are vulnerable to chilling injury (CI). This can lead to limited longevity when they are subjected to cold storage conditions. This study investigated the effectiveness of a preharvest spray containing 0.02% hexanal in reducing CI and improving the postharvest storage quality of 'Star' and 'Biloxi' blueberries. The blueberries were stored for a period of 5 weeks at 2 °C and in 90% relative humidity (RH). The findings revealed that the preharvest hexanal spraying of both cultivars delayed senescence by mitigating CI, as evidenced by the bolstering of the antioxidant defense system through increased superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and phenylalanine ammonia lyase (PAL) enzyme activity. The treated fruit also maintained elevated levels of total phenol content (TPC), total flavonoids (TFC), and vitamin C, demonstrating enhanced free radical scavenging capacity (FRSC), while exhibiting reduced polyphenoloxidase (PPO) activity, and reduced malondialdehyde (MDA), and H2O2 content in comparison with the control group. The preharvest hexanal treatment also suppressed fruit softening by maintaining greater firmness and higher membrane stability index (MSI) scores, inhibiting the activity of polygalacturonase (PG), pectinmethylesterase (PME), xylanase, and α-amylase, and reducing microbial counts (MC) and incidence of decay (DI) in comparison with the control. Preharvest hexanal treatment also improved the overall storage quality by reducing weight loss, total soluble solids (TSS), pH, and the TSS/acid ratio, while increasing titratable acidity (TA) in comparison with the control during cold storage. The findings suggest that hexanal, as a preharvest application, delays senescence effectively and preserves overall quality by enhancing cold tolerance through antioxidant defense mechanisms in blueberry storage under cold conditions. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA