Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 70(12): 3629-3642, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33948686

RESUMO

Non-responders to checkpoint inhibitors generally have low tumor T cell infiltration and could benefit from immunotherapy that activates dendritic cells, with priming of tumor-reactive T cells as a result. Such therapies may be augmented by providing tumor antigen in the form of cancer vaccines. Our aim was to study the effects of mitazalimab (ADC-1013; JNJ-64457107), a human anti-CD40 agonist IgG1 antibody, on activation of antigen-presenting cells, and how this influences the priming and anti-tumor potential of antigen-specific T cells, in mice transgenic for human CD40. Mitazalimab activated splenic CD11c+ MHCII+ dendritic cells and CD19+ MHCII+ B cells within 6 h, with a return to baseline within 1 week. This was associated with a dose-dependent release of proinflammatory cytokines in the blood, including IP-10, MIP-1α and TNF-α. Mitazalimab administered at different dose regimens with ovalbumin protein showed that repeated dosing expanded ovalbumin peptide (SIINFEKL)-specific CD8+ T cells and increased the frequency of activated ICOS+ T cells and CD44hi CD62L- effector memory T cells in the spleen. Mitazalimab prolonged survival of mice bearing MB49 bladder carcinoma tumors and increased the frequency of activated granzyme B+ CD8+ T cells in the tumor. In the ovalbumin-transfected tumor E.G7-OVA lymphoma, mitazalimab administered with either ovalbumin protein or SIINFEKL peptide prolonged the survival of E.G7-OVA tumor-bearing mice, as prophylactic and therapeutic treatment. Thus, mitazalimab activates antigen-presenting cells, which improves expansion and activation of antigen-specific T cells and enhances the anti-tumor efficacy of a model cancer vaccine.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos CD40/imunologia , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos B/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Imunoterapia/métodos , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Cancer Immunol Immunother ; 67(4): 639-652, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29332158

RESUMO

Tumor-reactive T lymphocytes can promote the regression of established tumors. However, their efficacy is often limited by immunosuppressive mechanisms that block T cell accumulation or function. ACT provides the opportunity to ameliorate immune suppression prior to transfer of tumor-reactive T cells to improve the therapeutic benefit. We evaluated the combination of lymphodepleting whole body irradiation (WBI) and agonist anti-CD40 (αCD40) antibody on control of established autochthonous murine neuroendocrine pancreatic tumors following the transfer of naïve tumor-specific CD8 T cells. Sublethal WBI had little impact on disease outcome but did promote T cell persistence in the lymphoid organs. Host conditioning with αCD40, an approach known to enhance APC function and T cell expansion, transiently increased donor T cell accumulation in the lymphoid organs and pancreas, but failed to control tumor progression. In contrast, combined WBI and αCD40 prolonged T cell proliferation and dramatically enhanced accumulation of donor T cells in both the lymphoid organs and pancreas. This dual conditioning approach also promoted high levels of inflammation in the pancreas and tumor, induced histological regression of established tumors, and extended the lifespan of treated mice. Prolonged survival was entirely dependent upon adoptive transfer, but only partially dependent upon IFNγ production by donor T cells. Our results identify the novel combination of two clinically relevant host conditioning approaches that synergize to overcome immune suppression and drive strong tumor-specific T cell accumulation within well-established tumors.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiorradioterapia , Ativação Linfocitária/imunologia , Neoplasias Pancreáticas/terapia , Irradiação Corporal Total , Transferência Adotiva , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Doadores de Tecidos
3.
Front Immunol ; 14: 1141712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006295

RESUMO

Inroduction: Anti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality. Method/Results: Here, we reveal that ß-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that ß-2 adrenergic receptor (ß2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan ß-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy. Discussion/Conclusion: Thus, our study highlights an important mechanistic link between stress-induced ß2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Antígenos CD40 , Linfócitos T Citotóxicos , Neoplasias/metabolismo , Receptores Adrenérgicos/metabolismo
4.
J Control Release ; 285: 23-34, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008369

RESUMO

Conventional systemic immunotherapy administration often results in insufficient anti-tumor immune response and adverse side effects. Delivering immunotherapeutics intratumorally could maximize tumor exposure, elicit efficient anti-tumor immune response, and minimize toxicity. To fulfill the unmet clinical need for sustained local drug delivery and to avoid repeated intratumoral injections, we developed a nanofluidic-based device for intratumoral drug delivery called the nanofluidic drug-eluting seed (NDES). The NDES is inserted intratumorally using a minimally invasive trocar method similar to brachytherapy seed insertion and offers a clinical advantage of drug elution. Drug diffusion from the NDES is regulated by physical and electrostatic nanoconfinement, thereby resulting in constant and sustained immunotherapeutic delivery without the need for injections or clinician intervention. In this study, the NDES was used to deliver immunotherapeutics intratumorally in the 4 T1 orthotopic murine mammary carcinoma model, which recapitulates triple negative breast cancer. We demonstrated that NDES-mediated intratumoral release of agonist monoclonal antibodies, OX40 and CD40, resulted in potentiation of local and systemic anti-tumor immune response and inhibition of tumor growth compared to control mice. Further, mice treated with NDES-CD40 demonstrated minimal liver damage compared to systemically treated mice. Collectively, our study highlights the NDES as an effective platform for sustained intratumoral immunotherapeutic delivery. The potential clinical impact is tremendous given that the NDES is applicable to a broad spectrum of drugs and solid tumors.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Implantes de Medicamento , Imunoterapia/instrumentação , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Implantes de Medicamento/química , Desenho de Equipamento , Feminino , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA