Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539110

RESUMO

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Assuntos
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Pós , Flavonoides/metabolismo , Fenóis/metabolismo , Sementes/metabolismo
2.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893502

RESUMO

Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.


Assuntos
Polifenóis , Salvia , Polifenóis/metabolismo , Salvia/metabolismo , Salvia/química , Antioxidantes/metabolismo , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cinamatos/metabolismo , Cinamatos/química , Ácido Rosmarínico , Depsídeos/metabolismo , Cotilédone/metabolismo , Cotilédone/química , Ácidos Naftalenoacéticos/farmacologia , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
3.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257387

RESUMO

The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.


Assuntos
Camellia sinensis , Proantocianidinas , Antioxidantes/farmacologia , Fenóis/farmacologia , Polifenóis , Peroxidases , Fenilalanina , Superóxido Dismutase
4.
Plant Cell Rep ; 42(4): 689-705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753041

RESUMO

KEY MESSAGE: Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Desdiferenciação Celular/genética , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Longo não Codificante/genética , Plantas/genética
5.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903418

RESUMO

Leontopodium alpinum is an important source of raw material for food, medicine, and modern cosmetics. The purpose of this study was to develop a new application for protection against blue light damage. To investigate the effects and mechanism of action of Leontopodium alpinum callus culture extract (LACCE) on blue light damage, a blue-light-induced human foreskin fibroblast damage model was established. The contents of collagen (COL-I), matrix metalloproteinase 1 (MMP-1), and opsin 3 (OPN3) were detected using enzyme-linked immunosorbent assays and Western blotting. The calcium influx and reactive oxygen species (ROS) levels were measured via flow cytometry and the results showed that the LACCE (10-15 mg/mL) promoted the production of COL-I, inhibited the secretion of MMP-1, OPN3, ROS and calcium influx, and may play a role in inhibiting the activation of blue light on the OPN3-calcium pathway. Thereafter, high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry were used to quantitatively analyze the contents of nine active ingredients in the LACCE. The results indicated that LACCE has an anti-blue-light-damage effect and provides theoretical support for the development of new raw materials in the natural food, medicine, and skin care industries.


Assuntos
Prepúcio do Pênis , Metaloproteinase 1 da Matriz , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Prepúcio do Pênis/metabolismo , Cálcio/farmacologia , Extratos Vegetais/química , Fibroblastos , Opsinas de Bastonetes/farmacologia
6.
Mol Biol Rep ; 49(6): 5241-5249, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34472005

RESUMO

BACKGROUND: Ricinus communis L. (castor bean) is valued for its oil and the performance of oil is closely related to its fatty acid composition. Thus, producing oil in vitro with favored fatty acid profiles is a promising research area and may also offer industrial opportunities. MATERIAL AND METHOD: In line with this, the total amount of oil and the fatty acid composition of the samples, which were endosperm and calli obtained by treatment of various doses of plant growth regulators were determined. RESULTS: Results showed that the type and amount of the plant growth regulator used in the media affect the fatty acid composition. In detail, the biggest change was shown by Indole-3-Acetic Acid (IAA), in general, using the plant growth regulators at 5 mg L-1, instead of 20 mg L-1, was found to have induced larger differentiations. The effect of a natural plant growth regulator (IAA) on fatty acid profiles was bigger than the synthetic ones (NAA, 1-Naphthaleneacetic acid, and 2,4 D, 2,4-Dichlorophenoxyacetic acid). The media containing 5 mg L-1 of NAA, 20 mg L-1 of NAA, 20 mg L-1 of 2,4 D, or 5 mg L-1 of 2,4 D gave similar results.


Assuntos
Ricinus communis , Ricinus , Ácido 2,4-Diclorofenoxiacético , Ácidos Graxos , Reguladores de Crescimento de Plantas/farmacologia
7.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335134

RESUMO

The present study characterizes the 5' regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5'UTR and 31 nucleotide 5' fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50-500 µM methyl jasmonate, with peaks observed after 10-20 and 50-60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 µM MeJa induction, and a second, much lower one, was observed after 50 days of 50 µM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data.


Assuntos
Salvia miltiorrhiza , Abietanos , Acetatos , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia
8.
World J Microbiol Biotechnol ; 38(4): 62, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35199239

RESUMO

In vitro somatic callus culturing is used widely in plant biotechnology, but its effectiveness depends largely on the donor plant genotype. Bacteria or components of their cells are rarely used to activate morphogenesis. In this work, inoculation of explants from immature wheat (Triticum aestivum L.) embryos with a suspension of living cells of the bacterium Azospirillum brasilense Sp7 resulted in callus death after 7 days of growth, in contrast to explant treatment with a suspension of heat-killed whole cells of Sp7. The experiments used two wheat lines, LRht-B1a and LRht-B1c, which differ in morphogenic activity. Growing calluses with the lipopolysaccharide of A. brasilense Sp7 increased the yield of regenerated plants 2- to 3.5-fold in both lines. This increase was through the activation of regenerant formation from morphogenic calluses. We have demonstrated for the first time the effects of bacterial flagellin on plant tissue culture. The polar-flagellum flagellin of A. brasilense Sp7 leveled the genotypic differences in the morphogenic ability of callus tissue. Specifically, it increased the yield of morphogenic calluses in the weakly morphogenic line LRht-B1a to the yield value in the highly morphogenic line LRht-B1c but lowered the yield of regenerants in the highly morphogenic line LRht-B1c to the yield value in the weakly morphogenic line LRht-B1a. Thus, bacterial lipopolysaccharides and flagellins can be used to regulate the formation of morphogenic calluses and regenerants in plant tissue culturing in vitro.


Assuntos
Azospirillum brasilense , Azospirillum brasilense/genética , Flagelina , Lipopolissacarídeos/farmacologia , Morfogênese , Regeneração , Triticum/microbiologia
9.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770749

RESUMO

Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries.


Assuntos
Antioxidantes/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Polifenóis/biossíntese , Metabolismo Secundário/efeitos dos fármacos , Zygophyllaceae/efeitos dos fármacos , Zygophyllaceae/metabolismo , Cloreto de Alumínio/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Ativação Enzimática/efeitos dos fármacos , Flavonoides/biossíntese , Sequestradores de Radicais Livres , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fenóis/metabolismo , Polifenóis/química , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos , Zygophyllaceae/química
10.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361665

RESUMO

In vitro cultures of scarlet flax (Linum grandiflorum L.), an important ornamental flax, have been established as a new possible valuable resource of lignans and neolignans for antioxidant and anti-inflammatory applications. The callogenic potential at different concentrations of α-naphthalene acetic acid (NAA) and thidiazuron (TDZ), alone or in combinations, was evaluated using both L. grandiflorum hypocotyl and cotyledon explants. A higher callus induction frequency was observed on NAA than TDZ, especially for hypocotyl explants, with a maximum frequency (i.e., 95.2%) on 1.0 mg/L of NAA. The presence of NAA (1.0 mg/L) in conjunction with TDZ tended to increase the frequency of callogenesis relative to TDZ alone, but never reached the values observed with NAA alone, thereby indicating the lack of synergy between these two plant growth regulators (PGRs). Similarly, in terms of biomass, NAA was more effective than TDZ, with a maximum accumulation of biomass registered for medium supplemented with 1.0 mg/L of NAA using hypocotyls as initial explants (DW: 13.1 g). However, for biomass, a synergy between the two PGRs was observed, particularly for cotyledon-derived explants and for the lowest concentrations of TDZ. The influence of these two PGRs on callogenesis and biomass is discussed. The HPLC analysis confirmed the presence of lignans (secoisolariciresinol (SECO) and lariciresinol (LARI) and neolignan (dehydrodiconiferyl alcohol [DCA]) naturally accumulated in their glycoside forms. Furthermore, the antioxidant activities performed for both hypocotyl- and cotyledon-derived cultures were also found maximal (DPPH: 89.5%, FRAP 866: µM TEAC, ABTS: 456 µM TEAC) in hypocotyl-derived callus cultures as compared with callus obtained from cotyledon explants. Moreover, the anti-inflammatory activities revealed high inhibition (COX-1: 47.4% and COX-2: 51.1%) for extract of hypocotyl-derived callus cultures at 2.5 mg/L TDZ. The anti-inflammatory action against COX-1 and COX-2 was supported by the IC50 values. This report provides a viable approach for enhanced biomass accumulation and efficient production of (neo)lignans in L. grandiflorum callus cultures.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Butileno Glicóis/análise , Cotilédone/química , Linho/química , Furanos/análise , Hipocótilo/química , Lignanas/análise , Extratos Vegetais/análise , Biomassa , Cromatografia Líquida de Alta Pressão/métodos , Cotilédone/metabolismo , Meios de Cultura/química , Técnicas de Cultura/métodos , Linho/metabolismo , Hipocótilo/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Fenóis/análise , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Tiadiazóis/farmacologia
11.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096885

RESUMO

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Assuntos
Antioxidantes/metabolismo , Ocimum basilicum/química , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Ocimum basilicum/metabolismo , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Tailândia
12.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783666

RESUMO

The main purpose of this publication was to obtain the S-enantiomer of indan-1-ol with high enantiomeric excess and satisfactory yield. In our research, we used carrot callus cultures (Daucus carota L.), whereby the enzymatic system reduced indan-1-one and oxidized indan-1-ol. During the reaction of reduction, after five days, we received over 50% conversion, with the enantiomeric excess of the formed S-alcohol above 99%. In turn, during the oxidation of racemic indan-1-ol after 15 days, 36.7% of alcohol with an enantiomeric excess 57.4% S(+) remained in the reaction mixture. In addition, our research confirmed that the reactions of reduction and oxidation are competing reactions during the transformation of indan-1-ol and indan-1-one in carrot callus cultures.


Assuntos
Daucus carota/química , Indanos/química , Álcoois/química , Biotransformação , Células Cultivadas , Cromatografia Gasosa , Daucus carota/metabolismo , Oxirredução , Estereoisomerismo , Fatores de Tempo
13.
Cytogenet Genome Res ; 154(2): 107-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29635249

RESUMO

The meiotic and mitotic behavior of regenerated plants derived from a long-term callus culture, designated 12-F, was analyzed. This culture was heterozygous for an amplification of the heterochromatic knob on the long arm of chromosome 7 (K7L). We aimed to investigate if the amplification resulted from a breakage-fusion-bridge (BFB) cycle or from unequal sister chromatid recombination. Therefore, C-banded mitotic metaphases and pachytene, diakinesis, and anaphase I of regenerated plants were analyzed. Additionally, the occurrence of alterations in K7L was investigated in C-banded metaphases from short-term callus cultures derived from lines related to the donor genotype of the 12-F culture. As a result, plants homozygous and heterozygous for the amplification were detected. Meiosis was normal with few abnormalities, such as a low frequency of univalents at diakinesis. In the callus cultures a chromosome 7 with knobs of different sizes in the sister chromatids was detected and interpreted as a result of unequal crossing over. Other chromosomal alterations were consistent with the occurrence of BFB cycles. The finding of unequal crossing over in the cultures supports the conclusion that the amplification in the culture 12-F would be derived from this mechanism. If the amplification was derived from a BFB cycle, the terminal euchromatic segment between knob and the telomere would be deleted, and possibly, homozygous plants would not be viable.


Assuntos
Heterocromatina/genética , Zea mays/genética , Quebra Cromossômica , Cromossomos de Plantas/genética , Troca Genética , Meiose , Zea mays/citologia
14.
Photosynth Res ; 136(2): 199-214, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29071562

RESUMO

The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.


Assuntos
Antioxidantes/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Brassicaceae/citologia , Carotenoides/metabolismo , Sobrevivência Celular , Clorofila/metabolismo , Clorofila A , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Luz , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Técnicas de Cultura de Tecidos
15.
Biotechnol Appl Biochem ; 65(2): 150-155, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28332216

RESUMO

It has previously been shown that exogenous application of p-coumaric acid (CA), a precursor of phenolic compounds, improved stilbene production in cell cultures of Vitis amurensis. This study examines the effect of cinnamic (Cin) and caffeic (Caf) acids, which are also phenolic precursors, on stilbene biosynthesis in the cell cultures. Five stilbenes, t-resveratrol diglucoside, t-piceid (t-resveratrol glucoside), t-resveratrol, t-ε-viniferin, and t-δ-viniferin, were found in the treated and untreated cells. Cin acid increased the total stilbene production in the grape cell cultures 2.3-3.5 times in comparison with that in the untreated cells. Caf acid increased the total stilbene production by 1.8- to 1.9-fold, but this increase was not considerably different from stilbene production in the untreated cells. Cin acid affected the total stilbene production via a marked increase in the content of t-resveratrol diglucoside (up to 2.2 times), t-piceid (up to three times), t-resveratrol (up to 5.1 times), t-ε-viniferin (up to eight times), and t-δ-viniferin (up to 9.2 times). Transcription levels of VaSTS5, 6, 7, 8, and 10 genes considerably increased under 0.1, 0.25, and 0.5 mM Cin acid. These results indicate that Cin acid increased stilbene production in V. amurensis calli via a selective enhancement of STS gene expression.


Assuntos
Aciltransferases/genética , Ácidos Cafeicos/metabolismo , Técnicas de Cultura de Células/métodos , Cinamatos/metabolismo , Proteínas de Plantas/genética , Estilbenos/metabolismo , Vitis/metabolismo , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estilbenos/análise , Vitis/química , Vitis/citologia , Vitis/genética
16.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799442

RESUMO

A protocol was established to produce bioactive compounds in a callus culture of Ageratina pichinchensis by using 1 mg L-1 NAA with 0.1 mg L-1 KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation and characterization of eleven secondary metabolites, of which dihydrobenzofuran (5) and 3-epilupeol (7), showed important anti-inflammatory activity. Compound 5 inhibits in vitro the secretion of NO (IC50 = 36.96 ± 1.06 µM), IL-6 (IC50 = 73.71 ± 3.21 µM), and TNF-α (IC50 = 73.20 ± 5.99 µM) in RAW (Murine macrophage cells) 264.7 macrophages, as well as the activation of NF-κB (40% at 150 µM) in RAW-blue macrophages, while compound 7 has been described that inhibit the in vivo TPA-induced ear edema, and the in vitro production of NO, and the PLA2 enzyme activity. In addition, quantitative GC-MS analysis showed that the anti-inflammatory metabolites 5 and 7 were not detected in the wild plant. Overall, our results indicated that A. pichinchensis can be used as an alternative biotechnological resource for obtaining anti-inflammatory compounds. This is the first report of the anti-inflammatory activity of compound 5 and its production in a callus culture of A. pichinchensis.


Assuntos
Ageratina/química , Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Edema/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Benzofuranos/isolamento & purificação , Técnicas de Cultura , Orelha , Edema/induzido quimicamente , Edema/imunologia , Edema/patologia , Etanol/química , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Cinetina/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Triterpenos Pentacíclicos/isolamento & purificação , Fosfolipases A2/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7 , Metabolismo Secundário/efeitos dos fármacos , Solventes/química , Acetato de Tetradecanoilforbol/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
17.
Molecules ; 22(10)2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065539

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 µg/mL, 5.19 µM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 µg/mL, 18.91 µM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proliferação de Células/efeitos dos fármacos , Fagopyrum/química , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Pirazinamida/química , Pirazinamida/farmacologia , Pirazinas/síntese química , Pirazinas/química , Estresse Fisiológico/efeitos dos fármacos
18.
World J Microbiol Biotechnol ; 34(1): 3, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29204736

RESUMO

We evaluated the effect of lipopolysaccharides from the plant-growth-promoting associative bacterium Azospirillum brasilense Sp245 and from the enteric bacterium Escherichia coli K12 on the morphogenic potential of in vitro-growing somatic calluses of soft spring wheat (Triticum aestivum L. cv. Saratovskaya 29). A genetic model was used that included two near-isogenic lines of T. aestivum L. cv. Saratovskaya 29 with different embryogenic capacities; one of these lines carries the Rht-B1 dwarfing gene, whereas the other lacks it. When added to the nutrient medium, the lipopolysaccharide of A. brasilense Sp245 promoted the formation of calluses with meristematic centers and stimulated the regeneration ability of the cultured tissues in both lines. By contrast, the lipopolysaccharide of the enteric bacterium E. coli K12 barely affected the morphogenetic activity of callus cells and the yield of morphogenic calluses and regenerated plants. These findings indicate that the lipopolysaccharide of the plant-growth-promoting associative bacterium A. brasilense Sp245 specifically enhances the morphogenetic activity of wheat somatic tissues, which increases the efficacy of culturing of genotypes with a relatively low morphogenic potential. The results of the study may contribute to the improvement of the efficacy of plant cell selection and gene engineering and to a better understanding of the mechanisms responsible for plant recognition of lipopolysaccharides of associative bacteria.


Assuntos
Lipopolissacarídeos/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Triticum/efeitos dos fármacos , Azospirillum brasilense/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cromossomos de Plantas , Escherichia coli K12/metabolismo , Modelos Genéticos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Regeneração , Triticum/genética
19.
Genome ; 59(6): 367-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27203556

RESUMO

Breakpoints involved in chromosome alterations associated with heterochromatin have been detected in maize plants regenerated from callus culture. A cytogenetic analysis of plants regenerated from a maize callus was performed aiming to analyze the stability of a chromosome 7 bearing a deficiency-duplication (Df-Dp), which was interpreted as derived from a chromatid type breakage-fusion-bridge (BFB) cycle. The Df-Dp chromosome 7 was stable in mitotic and meiotic cells of the regenerated plants. Fluorescence in situ hybridization showed signals of telomeric sequences on the broken chromosome arm and provided evidence of de novo telomere formation. The stability of two types of altered chromosome 7 was investigated in C-banded metaphases from samples of the original callus that were collected during a period of 30-42 months after culture initiation. New alterations involving heterochromatic knobs of chromosomes 7 and 9 were observed. The aberrant chromosomes were stable in the subcultures, thus providing evidence of broken chromosome healing. The examination of anaphases showed the presence of bridges, which was consistent with the occurrence of BFB cycles. De novo telomere formation occurred in euchromatic and heterochromatic chromosome termini. The results point to events of chromosomal evolution that might occur in plants.


Assuntos
Quebra Cromossômica , Cromossomos/genética , Telômero/genética , Zea mays/genética , Ciclo Celular/genética , Células Cultivadas , Instabilidade Cromossômica , Bandeamento Cromossômico , Cromossomos/fisiologia , Heterocromatina/genética , Hibridização in Situ Fluorescente , Meiose/genética , Mitose/genética
20.
Appl Microbiol Biotechnol ; 100(17): 7479-89, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27063013

RESUMO

Maackia amurensis Rupr. et Maxim is a valuable leguminous tree grown in the Russian Far East, in China, and in Korea. Polyphenols from the heartwood of this species (primarily stilbenes and isoflavonoids) possess strong hepatoprotective activity. Callus culture of M. amurensis produced isoflavonoids and their derivatives. In pharmacological experiments, the callus complex was at least as effective, as the plant complex. To increase the yield of isoflavonoids, calli were transformed with the rolB gene of Agrobacterium rhizogenes. Neomycin phosphotransferase (nptII) gene was used for transgenic cell selection. Three rolB transgenic callus lines with different levels of the rolB gene expression were established. Insertion of the rolB gene caused alterations in callus structure, growth, and isoflavonoid production, and stronger alterations were observed with higher expression levels. MB1, MB2, and MB4 cultures accumulated 1.4, 1.5, and 2.1 % of dry weight (DW) isoflavonoids, respectively. In contrast, the empty vector-transformed MV culture accumulated 1.22 % DW. Isoflavonoid productivity of the obtained MB1, MB2, and MB4 cultures was equal to 117, 112, and 199 mg/L of medium, respectively, comparing to 106 mg/L for the MV culture. High level of expression of the rolB gene in MB4 culture led to a 2-fold increase in the isoflavonoid content and productivity and reliably increased dry biomass accumulation. Lower expression levels of the rolB gene in MB1 and MB2 calli did not significantly enhance biomass accumulation and isoflavonoid content, although the rolB gene activated isoflavonoid biosynthesis during the early growth stages and caused the increased content of several distinct compounds.


Assuntos
Proteínas de Bactérias/genética , Isoflavonas/biossíntese , Maackia/genética , Maackia/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , beta-Glucosidase/genética , Agrobacterium/genética , Regulação da Expressão Gênica de Plantas , Isoflavonas/química , Canamicina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA