Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Small ; 20(5): e2303778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752783

RESUMO

Cellulose nanocrystal (CNC) is a renewable resource derived from lignocellulosic materials, known for its optical permeability, biocompatibility, and unique self-assembly properties. Recent years have seen great progresses in cellulose nanocrystal-based chiral photonic materials. However, due to its inherent brittleness, cellulose nanocrystal shows limitations in the fields of flexible materials, optical sensors and food freshness testing. In order to solve the above limitations, attempts have been made to improve the flexibility of cellulose nanocrystal materials without destroying their structural color. Despite these progresses, a systematic review on them is lacking. This review aims to fill this gap by providing an overview of the main strategies and the latest research findings on the flexibilization of cellulose nanocrystal-based chiral nematic film materials (FCNM). Specifically, typical substances and methods used for their preparation are summarized. Moreover, different kinds of cellulose nanocrystal-based composites are compared in terms of flexibility. Finally, potential applications and future challenges of flexible cellulose nanocrystal-based chiral nematic materials are discussed, inspiring further research in this field.

2.
Small ; 20(42): e2402211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38898765

RESUMO

Cellulose nanocrystals (CNCs) have inspired the synthesis of various advanced nanomaterials, opening opportunities for different applications. However, a simple and robust approach for transferring the long-range chiral nematic nanostructures into TiO2 photocatalyst is still fancy. Herein, a successful fabrication of freestanding TiO2 films maintaining their macroscopic chiral nematic structures after removing the CNCs biotemplate is reported. It is demonstrated that including copper acetate in the sol avoids the epitaxial growth of the lamellar-like structure of TiO2 and stabilizes the chiral nematic structure instead. The experimental results and optical simulation demonstrate an enhancement at the blue and red edges of the Fabry-Pérot reflectance peak located in the visible range. This enhancement arises from the light scattering effect induced by the formation of the chiral nematic structure. The nanostructured films showed 5.3 times higher performance in the photocatalytic hydrogen generation, compared to lamellar TiO2, and benefited from the presence of copper species for charge carriers' separation. This work is therefore anticipated to provide a simple approach for the design of chiral nematic photocatalysts and also offers insights into the electron transfer mechanisms on TiO2/CuxO with variable oxidation states for photocatalytic hydrogen generation.

3.
Small ; 20(15): e2306810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012531

RESUMO

Pearlescent materials are of technological importance in a diverse array of industries from cosmetics to premium paints; however, chiral pearlescent materials remain unexplored. Here, chiral pearlescent films with on-demand iridescence and metallic appearance are simply organized by leveraging vertical pressure to direct the self-assembly of cellulose nanocrystals. The films are formed with a bilayer planar anchored left-handed chiral nematic architecture, in which the bottom layer is featured with a vertical gradient pitch, and the top layer is featured with a uniform pitch. Simultaneous reflection of the rainbow colors and an on-demand color of left-handed polarized light with angle-dependent wavelength and polarization state accounts for the unique optical phenomenon based on experimental observation and theoretical analysis. Such chiroptical property can be readily tuned with architectural design, enabling reproducible optical appearance with high fidelity. Bringing the pearlescence, iridescence, and specular reflection together endows cellulose nanocrystal films with rich and tunable chiroptical properties that can be used for anti-counterfeiting applications. The current work marks the beginning of chiral pearlescent materials from renewable resources, while the pressure-directed self-assembly provides a step toward scalable production.

4.
Small ; 20(35): e2401664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651220

RESUMO

Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.

5.
Chemistry ; 30(60): e202402171, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140897

RESUMO

Nanostructured materials represent promising substrates for biocatalyst immobilization and activation. Cellulose nanocrystals (CNCs), accessible from waste and/or renewable sources, are sustainable and biodegradable, show high specific surface area for anchoring a high number of enzymatic units, and high thermal and mechanical stability. In this work, we present a holistic enzyme-based approach to functional antibacterial materials by bioconjugation between the lysozyme from chicken egg white and enzymatic cellulose nanocrystals. The neutral CNCs were prepared by endoglucanase hydrolysis from Avicel. We explore the covalent immobilization of lysozyme on enzymatic CNCs and on their TEMPO oxidized derivatives (TO-CNCs), comparing immobilization yields, material properties, and enzymatic activities. The materials were characterized by X-ray diffractometry (XRD), attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FTIR), bicinchoninic acid (BCA) assay, field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS). We demonstrate the higher overall efficiency of the immobilization process carried out on TO-CNCs, based on the success of covalent bonding and on the stability of the isolated bioconjugates.


Assuntos
Celulose , Enzimas Imobilizadas , Muramidase , Nanopartículas , Celulose/química , Muramidase/química , Muramidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Nanopartículas/química , Galinhas , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Difração de Raios X , Hidrólise , Óxidos N-Cíclicos/química , Antibacterianos/química
6.
Chemistry ; : e202402141, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496505

RESUMO

Chirality is vital in many living species since it is responsible for structural iridescent coloration and plays a key role in light harvesting during natural photosynthesis. Developing photoactive materials with such chiral structures is a challenging but promising strategy for energy applications. Here, we describe a straightforward method to establish an active photonic glass obtained through the co-condensation of tetramethyl orthosilicate (TMOS) and titanium diisopropoxide bis(acetylacetonate) (TAA) dissolved in a liquid crystal formed from cellulose nanocrystalline (CNC). The inorganic glass maintains a long range of chiral nematic ordering, displaying iridescent colors characterized by a Bragg peak reflection. The reflected wavelengths are tuned all over the UV-visible range, demonstrating that the replica of the chiral nematic structure generates photonic properties. Incorporation of gold nanoparticles (Au NPs) into the films is further performed by impregnation/chemical reduction. We show that the charge carrier density and photocatalytic H2 generation were amplified when the photonic band gap edges matched the absorbance of the TiO2 and localized surface plasmon resonance (LSPR) of AuNPs. This photocatalytic glass with chiral nematic ordering and a tunable photonic bandgap paves the way for the development of metamaterials with new applications, such as asymmetric photocatalysis.

7.
Biopolymers ; 115(5): e23608, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38923469

RESUMO

The paper reports on the preparation of cellulose nanocrystals/reduced graphene oxide matrix loaded with cuprous oxide nanoparticles (CNC/rGO-Cu2O) through a simple solvothermal method and its application for 4-nitrophenol reduction to 4-aminophenol using sodium borohydride. The CNC/rGO-Cu2O nanocomposite was formed chemically by first mixing CNC and graphene oxide (GO) followed by complexation of the negatively charged functional groups of CNC/GO with Cu2+ ions and subsequent heating at 100°C. This resulted in the simultaneous reduction of GO to rGO and the formation of Cu2O nanoparticles. The as-elaborated nanocomposite was firstly characterized using different techniques such as atomic force microscopy, scanning electron microscopy, transmission electron microscopy, UV-Vis spectrophotometry, Raman spectroscopy and x-ray photoelectron spectroscopy. Then, it was successfully applied for efficient catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride: the reduction was completed in about 6 min. After eight times use, the catalyst still maintained good catalytic performance. Compared to CNC/rGO, rGO/Cu2O and free Cu2O nanoparticles, the CNC/rGO-Cu2O nanocomposite exhibits higher catalytic activity even at lower copper loading.


Assuntos
Celulose , Cobre , Grafite , Nitrofenóis , Oxirredução , Grafite/química , Nitrofenóis/química , Cobre/química , Celulose/química , Catálise , Nanocompostos/química , Aminofenóis/química , Boroidretos/química , Espectroscopia Fotoeletrônica , Nanopartículas/química , Óxidos/química , Análise Espectral Raman
8.
Luminescence ; 39(1): e4634, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286605

RESUMO

In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.


Assuntos
Apium , Nanopartículas , Humanos , Celulose/química , Quercetina , Transferrina/química , Adsorção , Nanopartículas/química , Digestão
9.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732196

RESUMO

The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials.


Assuntos
Celulose , Etanol , Umidade , Nanopartículas , Óxido de Zinco , Celulose/química , Óxido de Zinco/química , Etanol/química , Nanopartículas/química , Nanocompostos/química
10.
Prep Biochem Biotechnol ; : 1-14, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39475461

RESUMO

The present study reports the green synthesis of cellulose nanocrystals from the shells of Sterculia foetida (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.6 ± 0.84 w/w, was obtained using 90% formic acid at 110 °C in 120 min. The extracted cellulose was characterized and identified by instrumental analyses. SEM analysis showed skeletal rod-like microfibril structures and similar intra-fibrillar widths. CP/MAS 13C NMR and FTIR spectrum revealed the purity of cellulose and the absence of other components like hemicellulose and lignin. XRD study revealed a cellulose crystallinity index of 88.07%. BET analysis showed a good surface area (3.3213 m2/g) and a micro-pore area of 1.871 m2/g. The cellulose nanocrystals were synthesized from the extracted cellulose using deep eutectic solvents (DES), choline chloride and lactic acid (1:2 ratio). The cellulose nanocrystals (CNC) synthesized from DES-based exhibited zeta potential and particle size of -16.7 mV and 576.3 d.nm. DES-synthesized cellulose nanocrystals were spherical-like shapes, as observed from TEM images. The present results exposed that formic acid is an effective and green catalyst for the extraction of cellulose and DES for the sustainable synthesis of CNC.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38511615

RESUMO

Cellulose was isolated from recycled pulp and paper sludge and used to synthesize cellulose nanocrystals. Response surface methodology and Box-Behnken design model were used to predict, improve, and optimize the cellulose isolation process. The optimal conditions were a reaction temperature of 87.5 °C, 180 min with 4% sodium hydroxide. SEM and TEM results revealed that the isolated cellulose had long rod-like structures of different dimensions than CNCs with short rod-like structures. The crystallinity index from XRD significantly increased from 41.33%, 63.7%, and 75.6% for Kimberly mill pulp sludge (KMRPPS), chemically purified cellulose and cellulose nanocrystals, respectively. The TGA/DTG analysis showed that the isolated cellulosic materials possessed higher thermal stability. FTIR analysis suggested that the chemical structures of cellulose and CNCs were modified by chemical treatment. The cellulose surface was highly hydrophilic compared to the CNCs based on the high water holding capacity of 65.31 ± 0.98% and 83.14 ± 1.22%, respectively. The synthesized cellulosic materials portrayed excellent properties for high-end industrial applications like biomedical engineering, advanced materials, nanotechnology, sustainable packaging, personal care products, environmental remediation, additive manufacturing, etc.


Assuntos
Nanopartículas , Esgotos , Celulose/química , Temperatura , Água/química , Nanotecnologia , Nanopartículas/química
12.
Angew Chem Int Ed Engl ; 63(14): e202319051, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305690

RESUMO

The design of aqueous zinc (Zn) chemistry energy storage with high rate-capability and long serving life is a great challenge due to its inhospitable coordination environment and dismal interfacial chemistry. To bridge this big gap, herein, we build a highly reversible aqueous Zn battery by taking advantages of the biomass-derived cellulose nanocrystals (CNCs) electrolyte additive with unique physical and chemical characteristics simultaneously. The CNCs additive not only serves as fast ion carriers for enhancing Zn2+ transport kinetics but regulates the coordination environment and interface chemistry to form dynamic and self-repairing protective interphase, resulting in building ultra-stable Zn anodes under extreme conditions. As a result, the engineered electrolyte system achieves a superior average coulombic efficiency of 97.27 % under 140 mA cm-2, and steady charge-discharge for 982 h under 50 mA cm-2, 50 mAh cm-2, which proposes a universal pathway to challenge aqueous Zn chemistry in green, sustainable, and large-scale applications.

13.
Small ; 19(3): e2205697, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408922

RESUMO

Optical encryption technologies are widely used in information security, whereas the technology with one single optical secret key can be easily cracked. Here, a triple encryption is reported, which hides patterned information in excitation-dependent allochroic materials with long afterglow, enhancing the security level. The allochroic materials are based on a uniaxial co-assembly structure of cellulose nanocrystals (CNCs) and silica. The assembled CNCs present blue emission with quantum yield of 19.8% under 367 nm UV radiation. The blue emission is maintained in the inverse structure when CNCs are calcinated and converted to carbon dots (CDs). The inverse uniaxial-assembly structure improves the CD emission by 6.7 times. The assembly structure can even improve the phosphorescence of CDs, leading to excellent excitation-dependent allochroic properties. Specifically, the materials maintain a cyan long afterglow luminescence at 480 nm after removing 365 nm UV light, whose lifetime is 0.492 s. Changing the excitation wavelength to 254 nm, a UV emission at 343 nm can be obtained, alongside a blue long afterglow luminescence of 420 nm, whose lifetime is 1.574 s. Combining with blue afterglow materials, optical encryption labels are prepared, which hide different patterned information in three scenarios: natural light, UV light, and afterglow luminescence.


Assuntos
Celulose , Nanopartículas , Luminescência , Nanopartículas/química , Raios Ultravioleta , Dióxido de Silício/química , Carbono
14.
Small ; 19(19): e2206847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732856

RESUMO

Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.

15.
Small ; 19(23): e2207685, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897028

RESUMO

Because of their exceptional physical and thermal properties, cellulose nanocrystals (CNCs) are a highly promising bio-based material for reinforcing fillers. Studies have revealed that some functional groups from CNCs can be used as a capping ligand to coordinate with metal nanoparticles or semiconductor quantum dots during the fabrication of novel complex materials. Therefore, through CNCs ligand encapsulation and electrospinning, perovskite-NC-embedded nanofibers with exceptional optical and thermal stability are demonstrated. The results indicate that, after continuous irradiation or heat cycling, the relative photoluminescence (PL) emission intensity of the CNCs-capped perovskite-NC-embedded nanofibers is maintained at ≈90%. However, the relative PL emission intensity of both ligand-free and long-alkyl-ligand-doped perovskite-NC-embedded nanofibers decrease to almost 0%. These results are attributable to the formation of specific clusters of perovskite NCs along with the CNCs structure and thermal property improvement of polymers. CNCs-doped luminous complex materials offer a promising avenue for stability-demanding optoelectronic devices and other novel optical applications.

16.
Small ; 19(34): e2301947, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093171

RESUMO

The development of long-lived electrochemical energy storage systems based on renewable materials is integral for the transition toward a more sustainable society. Supercapacitors have garnered considerable interest given their impressive cycling performance, low cost, and safety. Here, the first example of a chiral nematic activated carbon aerogel is shown. Specifically, supercapacitor materials are developed based on cellulose, a non-toxic and biodegradable material. The chiral nematic structure of cellulose nanocrystals (CNCs) is harnessed to obtain free-standing hierarchically ordered activated carbon aerogels. To impart multifunctionality, iron- and cobalt-oxide nanoparticles are incorporated within the CNC matrix. The hierarchical structure remains intact even at nanoparticle concentrations of ≈70 wt%. The aerogels are highly porous, with specific surface areas up to 820 m2 g-1 . A maximum magnetization of 17.8 ± 0.1 emu g-1 with superparamagnetic behavior is obtained, providing a base for actuator applications. These materials are employed as symmetric supercapacitors; owing to the concomitant effect of the hierarchically arranged carbon skeleton and KOH activation, a maximum Cp of 294 F g-1 with a capacitance retention of 93% after 2500 cycles at 50 mV s-1 is achieved. The multifunctionality of the composite aerogels opens new possibilities for the use of biomass-derived materials in energy storage and sensing applications.

17.
Small ; 19(29): e2207932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052499

RESUMO

Self-assembly of cellulose nanocrystals (CNCs) is invaluable for the development of sustainable optics and photonics. However, the functional failure of CNC-derived materials in humid or liquid environments inevitably impairs their development in biomedicine, membrane separation, environmental monitoring, and wearable devices. Here, a facile and robust method to fabricate insoluble hydrogels in a self-assembled CNC-polyvinyl alcohol (PVA) system is reported. Due to the reconstruction of inter- or intra-molecular hydrogen bond interactions, thermal dehydration makes an optimized CNC/PVA photonic film form a stable hydrogel network in an aqueous solution rather than dissolve. Notably, the resulting hydrogel exhibits superb mechanical performance (stress up to 3.3 Mpa and tough up to 0.73 MJ m-3 ) and reversible conversion between dry and wet states, enabling it convenient for specific functionalization. Sodium alginate (SA) can be adsorbed into the CNC photonic structure by swelling dry CNC/PVA film in a SA solution. The prepared hydrogel showcases the comprehensive properties of freezing resistance (-20°C), strong adhesion, satisfactory biocompatibility, and highly sensitive and selective Ca2+ sensing. The material could act as a portable wearable patch on the skin for the continuous analysis of calcium trends during different physical exercises, facilitating their development in precision nutrition and health monitoring.


Assuntos
Celulose , Nanopartículas , Celulose/química , Cálcio , Suor , Óptica e Fotônica , Nanopartículas/química , Álcool de Polivinil/química , Hidrogéis/química
18.
Small ; 19(50): e2304603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635120

RESUMO

Osmotic energy from the salinity gradients represents a promising energy resource with stable and sustainable characteristics. Nanofluidic membranes can be considered as powerful alternatives to the traditional low-performance ion exchange membrane to achieve high-efficiency osmotic energy harvesting. However, the development of a highly efficient and easily scalable core membrane component from low-cost raw materials remains challenging. Here, a composite membrane based on the self-assembly of cellulose nanocrystals (CNCs) with polyvinyl alcohol (PVA) and graphene oxide (GO) nanoflakes as additives is developed to provide a solution. The introduction of soft PVA polymer significantly improves the mechanical strength and water stability of the composite membrane by forming a nacre-like structure. Benefiting from the abundant negative charges of CNC nanorods and GO nanoflakes and the generated network nanochannels, the composite membrane demonstrates a good cation-selective transport capacity, thus contributing to an optimal osmotic energy conversion of 6.5 W m-2 under a 100-fold salinity gradient and an exemplary stability throughout 25 consecutive days of operation. This work provides an option for the development of nanofluidic membranes that can be easily produced on a large scale from well-resourced and sustainable biomass materials for high-efficiency osmotic energy conversion.

19.
Small ; 19(32): e2303064, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162465

RESUMO

Advanced multiplexing optical labels with multiple information channels provide a powerful strategy for large-capacity and high-security information encryption. However, current optical labels face challenges of difficulty to realize independent multi-channel encryption, cumbersome design, and environmental pollution. Herein, multiplexing chiroptical bio-labels integrating with multiple optical elements, including structural color, photoluminescence (PL), circular polarized light activity, humidity-responsible color, and micro/nano physical patterns, are constructed in complex design based on host-guest self-assembly of cellulose nanocrystals and bio-gold nanoclusters. The thin nanocellulose labels exhibit tunable circular polarized structural color crossover the entire visible wavelength and circularly polarized PL with the highest-recorded dissymmetry factor up to 1.05 due to the well-ordered chiral organization of templated gold nanoclusters. Most importantly, these elements can independently encode customized anti-counterfeiting information to achieve five independent channels of high-level anti-counterfeiting, which are rarely achieved in traditional materials and design counterparts. Considering the exceptional seamless integration of five independent encryption channels and the recyclable features of labels, the bio-labels have great potential for the next generation anti-counterfeiting materials technology.

20.
Small ; 19(18): e2207921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732850

RESUMO

It is suggested that chiral photonic bio-enabled integrated thin-film electronic elements can pave the base for next-generation optoelectronic processing, including quantum coding for encryption as well as integrated multi-level logic circuits. Despite recent advances, thin-film electronics for encryption applications with large-scale reconfigurable and multi-valued logic systems are not reported to date. Herein, highly secure optoelectronic encryption logic elements are demonstrated by facilitating the humidity-sensitive helicoidal organization of chiral nematic phases of cellulose nanocrystals (CNCs) as an active electrolyte layer combined with printed organic semiconducting channels. The ionic-strength controlled tunable photonic band gap facilitates distinguishable and quantized 13-bit electric signals triggered by repetitive changes of humidity, voltage, and the polarization state of the incident light. As a proof-of-concept, the integrated circuits responding to circularly polarized light and humidity are demonstrated as unique physically unclonable functional devices with high-level logic rarely achieved. The convergence between functional nanomaterials and the multi-valued logic thin-film electronic elements can provide optoelectronic counterfeiting, imaging, and information processing with multilevel logic nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA