Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36617023

RESUMO

Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.


Assuntos
COVID-19 , Internet das Coisas , Humanos , Inteligência Artificial , COVID-19/diagnóstico , Tecnologia , Internet
2.
Pattern Recognit ; 110: 107613, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32868956

RESUMO

The COVID-19 outbreak continues to threaten the health and life of people worldwide. It is an immediate priority to develop and test a computer-aided detection (CAD) scheme based on deep learning (DL) to automatically localize and differentiate COVID-19 from community-acquired pneumonia (CAP) on chest X-rays. Therefore, this study aims to develop and test an efficient and accurate deep learning scheme that assists radiologists in automatically recognizing and localizing COVID-19. A retrospective chest X-ray image dataset was collected from open image data and the Xiangya Hospital, which was divided into a training group and a testing group. The proposed CAD framework is composed of two steps with DLs: the Discrimination-DL and the Localization-DL. The first DL was developed to extract lung features from chest X-ray radiographs for COVID-19 discrimination and trained using 3548 chest X-ray radiographs. The second DL was trained with 406-pixel patches and applied to the recognized X-ray radiographs to localize and assign them into the left lung, right lung or bipulmonary. X-ray radiographs of CAP and healthy controls were enrolled to evaluate the robustness of the model. Compared to the radiologists' discrimination and localization results, the accuracy of COVID-19 discrimination using the Discrimination-DL yielded 98.71%, while the accuracy of localization using the Localization-DL was 93.03%. This work represents the feasibility of using a novel deep learning-based CAD scheme to efficiently and accurately distinguish COVID-19 from CAP and detect localization with high accuracy and agreement with radiologists.

3.
BMC Bioinformatics ; 21(Suppl 1): 192, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297952

RESUMO

BACKGROUND: Automatic segmentation and localization of lesions in mammogram (MG) images are challenging even with employing advanced methods such as deep learning (DL) methods. We developed a new model based on the architecture of the semantic segmentation U-Net model to precisely segment mass lesions in MG images. The proposed end-to-end convolutional neural network (CNN) based model extracts contextual information by combining low-level and high-level features. We trained the proposed model using huge publicly available databases, (CBIS-DDSM, BCDR-01, and INbreast), and a private database from the University of Connecticut Health Center (UCHC). RESULTS: We compared the performance of the proposed model with those of the state-of-the-art DL models including the fully convolutional network (FCN), SegNet, Dilated-Net, original U-Net, and Faster R-CNN models and the conventional region growing (RG) method. The proposed Vanilla U-Net model outperforms the Faster R-CNN model significantly in terms of the runtime and the Intersection over Union metric (IOU). Training with digitized film-based and fully digitized MG images, the proposed Vanilla U-Net model achieves a mean test accuracy of 92.6%. The proposed model achieves a mean Dice coefficient index (DI) of 0.951 and a mean IOU of 0.909 that show how close the output segments are to the corresponding lesions in the ground truth maps. Data augmentation has been very effective in our experiments resulting in an increase in the mean DI and the mean IOU from 0.922 to 0.951 and 0.856 to 0.909, respectively. CONCLUSIONS: The proposed Vanilla U-Net based model can be used for precise segmentation of masses in MG images. This is because the segmentation process incorporates more multi-scale spatial context, and captures more local and global context to predict a precise pixel-wise segmentation map of an input full MG image. These detected maps can help radiologists in differentiating benign and malignant lesions depend on the lesion shapes. We show that using transfer learning, introducing augmentation, and modifying the architecture of the original model results in better performance in terms of the mean accuracy, the mean DI, and the mean IOU in detecting mass lesion compared to the other DL and the conventional models.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Mamografia , Redes Neurais de Computação , Automação , Bases de Dados Factuais , Humanos
4.
Acta Clin Croat ; 59(4): 576-581, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34285427

RESUMO

The main goal of this study was to compare the results of computer aided detection (CAD) analysis in screening mammography with the results independently obtained by two radiologists for the same samples and to determine the sensitivity and specificity of CAD for breast lesions. A total of 436 mammograms were analyzed with CAD. For each screening mammogram, the changes in breast tissue recognized by CAD were compared to the interpretations of two radiologists. The sensitivity and specificity of CAD for breast lesions were calculated using contingency table. The sensitivity of CAD for all lesions was 54% and specificity 16%. CAD sensitivity for suspicious lesions only was 86%. CAD sensitivity for microcalcifications was 100% and specificity 45%. CAD mainly 'mistook' glandular parenchyma, connective tissue and blood vessels for breast lesions, and blood vessel calcifications and axillary folds for microcalcifications. In this study, we confirmed CAD as an excellent tool for recognizing microcalcifications with 100% sensitivity. However, it should not be used as a stand-alone tool in breast screening mammography due to the high rate of false-positive results.


Assuntos
Neoplasias da Mama , Mamografia , Neoplasias da Mama/diagnóstico por imagem , Computadores , Detecção Precoce de Câncer , Feminino , Humanos , Sensibilidade e Especificidade
5.
BMC Bioinformatics ; 20(Suppl 11): 281, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31167642

RESUMO

BACKGROUND: The limitations of traditional computer-aided detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients drive researchers to investigate deep learning (DL) methods for mammograms (MGs). Recent breakthroughs in DL, in particular, convolutional neural networks (CNNs) have achieved remarkable advances in the medical fields. Specifically, CNNs are used in mammography for lesion localization and detection, risk assessment, image retrieval, and classification tasks. CNNs also help radiologists providing more accurate diagnosis by delivering precise quantitative analysis of suspicious lesions. RESULTS: In this survey, we conducted a detailed review of the strengths, limitations, and performance of the most recent CNNs applications in analyzing MG images. It summarizes 83 research studies for applying CNNs on various tasks in mammography. It focuses on finding the best practices used in these research studies to improve the diagnosis accuracy. This survey also provides a deep insight into the architecture of CNNs used for various tasks. Furthermore, it describes the most common publicly available MG repositories and highlights their main features and strengths. CONCLUSIONS: The mammography research community can utilize this survey as a basis for their current and future studies. The given comparison among common publicly available MG repositories guides the community to select the most appropriate database for their application(s). Moreover, this survey lists the best practices that improve the performance of CNNs including the pre-processing of images and the use of multi-view images. In addition, other listed techniques like transfer learning (TL), data augmentation, batch normalization, and dropout are appealing solutions to reduce overfitting and increase the generalization of the CNN models. Finally, this survey identifies the research challenges and directions that require further investigations by the community.


Assuntos
Aprendizado Profundo , Mamografia/métodos , Redes Neurais de Computação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Bases de Dados Factuais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Publicações , Inquéritos e Questionários
6.
Eur Radiol ; 28(4): 1594-1599, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29063257

RESUMO

PURPOSE: To evaluate the usefulness of the CT temporal subtraction (TS) method for the detection of the lung cancer with predominant ground-glass opacity (LC-pGGO). MATERIALS AND METHODS: Twenty-five pairs of CT and their TS images in patients with LC-pGGO (31 lesions) and 25 pairs of those in patients without nodules were used for an observer performance study. Eight radiologists participated and the statistical significance of differences with and without the CT-TS was assessed by JAFROC analysis. RESULTS: The average figure-of-merit (FOM) values for all radiologists increased to a statistically significant degree, from 0.861 without CT-TS to 0.912 with CT-TS (p < .001). The average sensitivity for detecting the actionable lesions improved from 73.4 % to 85.9 % using CT-TS. The reading time with CT-TS was not significantly different from that without. CONCLUSION: The use of CT-TS improves the observer performance for the detection of LC-pGGO. KEY POINTS: • CT temporal subtraction can improve the detection accuracy of lung cancer. • Reading time with temporal subtraction is not different from that without. • CT temporal subtraction improves observer performance for ground-glass/subsolid nodule detection.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
AJR Am J Roentgenol ; 208(4): 739-749, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28026210

RESUMO

OBJECTIVE: Although imaging technology has advanced significantly since the work of Garland in 1949, interpretive error rates remain unchanged. In addition to patient harm, interpretive errors are a major cause of litigation and distress to radiologists. In this article, we discuss the mechanics involved in searching an image, categorize omission errors, and discuss factors influencing diagnostic accuracy. Potential individual- and system-based solutions to mitigate or eliminate errors are also discussed. CONCLUSION: Radiologists use visual detection, pattern recognition, memory, and cognitive reasoning to synthesize final interpretations of radiologic studies. This synthesis is performed in an environment in which there are numerous extrinsic distractors, increasing workloads and fatigue. Given the ultimately human task of perception, some degree of error is likely inevitable even with experienced observers. However, an understanding of the causes of interpretive errors can help in the development of tools to mitigate errors and improve patient safety.


Assuntos
Erros de Diagnóstico/prevenção & controle , Diagnóstico por Imagem/métodos , Percepção Visual , Humanos , Variações Dependentes do Observador , Segurança do Paciente , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
8.
BMC Med Imaging ; 16(1): 52, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581075

RESUMO

BACKGROUND: To investigate the feasibility of automated segmentation of visceral and subcutaneous fat areas from computed tomography (CT) images of ovarian cancer patients and applying the computed adiposity-related image features to predict chemotherapy outcome. METHODS: A computerized image processing scheme was developed to segment visceral and subcutaneous fat areas, and compute adiposity-related image features. Then, logistic regression models were applied to analyze association between the scheme-generated assessment scores and progression-free survival (PFS) of patients using a leave-one-case-out cross-validation method and a dataset involving 32 patients. RESULTS: The correlation coefficients between automated and radiologist's manual segmentation of visceral and subcutaneous fat areas were 0.76 and 0.89, respectively. The scheme-generated prediction scores using adiposity-related radiographic image features significantly associated with patients' PFS (p < 0.01). CONCLUSION: Using a computerized scheme enables to more efficiently and robustly segment visceral and subcutaneous fat areas. The computed adiposity-related image features also have potential to improve accuracy in predicting chemotherapy outcome.


Assuntos
Gordura Abdominal/diagnóstico por imagem , Antineoplásicos/uso terapêutico , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Ovarianas/tratamento farmacológico , Intervalo Livre de Doença , Tratamento Farmacológico , Estudos de Viabilidade , Feminino , Humanos , Modelos Logísticos , Neoplasias Ovarianas/diagnóstico por imagem , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento
9.
Int J Comput Assist Radiol Surg ; 19(8): 1527-1536, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625446

RESUMO

PURPOSE: The quality and bias of annotations by annotators (e.g., radiologists) affect the performance changes in computer-aided detection (CAD) software using machine learning. We hypothesized that the difference in the years of experience in image interpretation among radiologists contributes to annotation variability. In this study, we focused on how the performance of CAD software changes with retraining by incorporating cases annotated by radiologists with varying experience. METHODS: We used two types of CAD software for lung nodule detection in chest computed tomography images and cerebral aneurysm detection in magnetic resonance angiography images. Twelve radiologists with different years of experience independently annotated the lesions, and the performance changes were investigated by repeating the retraining of the CAD software twice, with the addition of cases annotated by each radiologist. Additionally, we investigated the effects of retraining using integrated annotations from multiple radiologists. RESULTS: The performance of the CAD software after retraining differed among annotating radiologists. In some cases, the performance was degraded compared to that of the initial software. Retraining using integrated annotations showed different performance trends depending on the target CAD software, notably in cerebral aneurysm detection, where the performance decreased compared to using annotations from a single radiologist. CONCLUSIONS: Although the performance of the CAD software after retraining varied among the annotating radiologists, no direct correlation with their experience was found. The performance trends differed according to the type of CAD software used when integrated annotations from multiple radiologists were used.


Assuntos
Aneurisma Intracraniano , Radiologistas , Software , Tomografia Computadorizada por Raios X , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Diagnóstico por Computador/métodos , Competência Clínica , Angiografia por Ressonância Magnética/métodos , Aprendizado de Máquina , Variações Dependentes do Observador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico
10.
Sci Rep ; 14(1): 20711, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237689

RESUMO

Tuberculosis (TB) is the leading cause of mortality among infectious diseases globally. Effectively managing TB requires early identification of individuals with TB disease. Resource-constrained settings often lack skilled professionals for interpreting chest X-rays (CXRs) used in TB diagnosis. To address this challenge, we developed "DecXpert" a novel Computer-Aided Detection (CAD) software solution based on deep neural networks for early TB diagnosis from CXRs, aiming to detect subtle abnormalities that may be overlooked by human interpretation alone. This study was conducted on the largest cohort size to date, where the performance of a CAD software (DecXpert version 1.4) was validated against the gold standard molecular diagnostic technique, GeneXpert MTB/RIF, analyzing data from 4363 individuals across 12 primary health care centers and one tertiary hospital in North India. DecXpert demonstrated 88% sensitivity (95% CI 0.85-0.93) and 85% specificity (95% CI 0.82-0.91) for active TB detection. Incorporating demographics, DecXpert achieved an area under the curve of 0.91 (95% CI 0.88-0.94), indicating robust diagnostic performance. Our findings establish DecXpert's potential as an accurate, efficient AI solution for early identification of active TB cases. Deployed as a screening tool in resource-limited settings, DecXpert could enable early identification of individuals with TB disease and facilitate effective TB management where skilled radiological interpretation is limited.


Assuntos
Software , Humanos , Índia/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Diagnóstico por Computador/métodos , Tuberculose/diagnóstico , Tuberculose/diagnóstico por imagem , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/diagnóstico , Sensibilidade e Especificidade , Adulto Jovem , Adolescente , Radiografia Torácica/métodos , Idoso
11.
Quant Imaging Med Surg ; 14(2): 1493-1506, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415154

RESUMO

Background: Detecting new pulmonary metastases by comparing serial computed tomography (CT) scans is crucial, but a repetitive and time-consuming task that burdens the radiologists' workload. This study aimed to evaluate the usefulness of a nodule-matching algorithm with deep learning-based computer-aided detection (DL-CAD) in diagnosing new pulmonary metastases on cancer surveillance CT scans. Methods: Among patients who underwent pulmonary metastasectomy between 2014 and 2018, 65 new pulmonary metastases missed by interpreting radiologists on cancer surveillance CT (Time 2) were identified after a retrospective comparison with the previous CT (Time 1). First, DL-CAD detected nodules in Time 1 and Time 2 CT images. All nodules detected at Time 2 were initially considered metastasis candidates. Second, the nodule-matching algorithm was used to assess the correlation between the nodules from the two CT scans and to classify the nodules at Time 2 as "new" or "pre-existing". Pre-existing nodules were excluded from metastasis candidates. We evaluated the performance of DL-CAD with the nodule-matching algorithm, based on its sensitivity, false-metastasis candidates per scan, and positive predictive value (PPV). Results: A total of 475 lesions were detected by DL-CAD at Time 2. Following a radiologist review, the lesions were categorized as metastases (n=54), benign nodules (n=392), and non-nodules (n=29). Upon comparison of nodules at Time 1 and 2 using the nodule-matching algorithm, all metastases were classified as new nodules without any matching errors. Out of 421 benign lesions, 202 (48.0%) were identified as pre-existing and subsequently excluded from the pool of metastasis candidates through the nodule-matching algorithm. As a result, false-metastasis candidates per CT scan decreased by 47.9% (from 7.1 to 3.7, P<0.001) and the PPV increased from 11.4% to 19.8% (P<0.001), while maintaining sensitivity. Conclusions: The nodule-matching algorithm improves the diagnostic performance of DL-CAD for new pulmonary metastases, by lowering the number of false-metastasis candidates without compromising sensitivity.

12.
Cogn Res Princ Implic ; 9(1): 59, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218972

RESUMO

Computer Aided Detection (CAD) has been used to help readers find cancers in mammograms. Although these automated systems have been shown to help cancer detection when accurate, the presence of CAD also leads to an over-reliance effect where miss errors and false alarms increase when the CAD system fails. Previous research investigated CAD systems which overlayed salient exogenous cues onto the image to highlight suspicious areas. These salient cues capture attention which may exacerbate the over-reliance effect. Furthermore, overlaying CAD cues directly on the mammogram occludes sections of breast tissue which may disrupt global statistics useful for cancer detection. In this study we investigated whether an over-reliance effect occurred with a binary CAD system, which instead of overlaying a CAD cue onto the mammogram, reported a message alongside the mammogram indicating the possible presence of a cancer. We manipulated the certainty of the message and whether it was presented only to indicate the presence of a cancer, or whether a message was displayed on every mammogram to state whether a cancer was present or absent. The results showed that although an over-reliance effect still occurred with binary CAD systems miss errors were reduced when the CAD message was more definitive and only presented to alert readers of a possible cancer.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Diagnóstico por Computador , Adulto , Idoso , Sinais (Psicologia) , Detecção Precoce de Câncer
13.
Cogn Res Princ Implic ; 8(1): 30, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222932

RESUMO

Computer-Aided Detection (CAD) has been proposed to help operators search for cancers in mammograms. Previous studies have found that although accurate CAD leads to an improvement in cancer detection, inaccurate CAD leads to an increase in both missed cancers and false alarms. This is known as the over-reliance effect. We investigated whether providing framing statements of CAD fallibility could keep the benefits of CAD while reducing over-reliance. In Experiment 1, participants were told about the benefits or costs of CAD, prior to the experiment. Experiment 2 was similar, except that participants were given a stronger warning and instruction set in relation to the costs of CAD. The results showed that although there was no effect of framing in Experiment 1, a stronger message in Experiment 2 led to a reduction in the over-reliance effect. A similar result was found in Experiment 3 where the target had a lower prevalence. The results show that although the presence of CAD can result in over-reliance on the technology, these effects can be mitigated by framing and instruction sets in relation to CAD fallibility.


Assuntos
Neoplasias da Mama , Interpretação de Imagem Assistida por Computador , Mamografia , Humanos , Fases de Leitura , Neoplasias da Mama/diagnóstico por imagem , Feminino
14.
Front Med (Lausanne) ; 10: 1195451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649977

RESUMO

Background: Chest radiography (chest X-ray or CXR) plays an important role in the early detection of active pulmonary tuberculosis (TB). In areas with a high TB burden that require urgent screening, there is often a shortage of radiologists available to interpret the X-ray results. Computer-aided detection (CAD) software employed with artificial intelligence (AI) systems may have the potential to solve this problem. Objective: We validated the effectiveness and safety of pulmonary tuberculosis imaging screening software that is based on a convolutional neural network algorithm. Methods: We conducted prospective multicenter clinical research to validate the performance of pulmonary tuberculosis imaging screening software (JF CXR-1). Volunteers under the age of 15 years, both with or without suspicion of pulmonary tuberculosis, were recruited for CXR photography. The software reported a probability score of TB for each participant. The results were compared with those reported by radiologists. We measured sensitivity, specificity, consistency rate, and the area under the receiver operating characteristic curves (AUC) for the diagnosis of tuberculosis. Besides, adverse events (AE) and severe adverse events (SAE) were also evaluated. Results: The clinical research was conducted in six general infectious disease hospitals across China. A total of 1,165 participants were enrolled, and 1,161 were enrolled in the full analysis set (FAS). Men accounted for 60.0% (697/1,161). Compared to the results from radiologists on the board, the software showed a sensitivity of 94.2% (95% CI: 92.0-95.8%) and a specificity of 91.2% (95% CI: 88.5-93.2%). The consistency rate was 92.7% (91.1-94.1%), with a Kappa value of 0.854 (P = 0.000). The AUC was 0.98. In the safety set (SS), which consisted of 1,161 participants, 0.3% (3/1,161) had AEs that were not related to the software, and no severe AEs were observed. Conclusion: The software for tuberculosis screening based on a convolutional neural network algorithm is effective and safe. It is a potential candidate for solving tuberculosis screening problems in areas lacking radiologists with a high TB burden.

15.
Children (Basel) ; 10(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980134

RESUMO

This study aimed to systematically review the literature to synthesise and summarise the evidence surrounding the efficacy of artificial intelligence (AI) in classifying paediatric pneumonia on chest radiographs (CXRs). Following the initial search of studies that matched the pre-set criteria, their data were extracted using a data extraction tool, and the included studies were assessed via critical appraisal tools and risk of bias. Results were accumulated, and outcome measures analysed included sensitivity, specificity, accuracy, and area under the curve (AUC). Five studies met the inclusion criteria. The highest sensitivity was by an ensemble AI algorithm (96.3%). DenseNet201 obtained the highest level of specificity and accuracy (94%, 95%). The most outstanding AUC value was achieved by the VGG16 algorithm (96.2%). Some of the AI models achieved close to 100% diagnostic accuracy. To assess the efficacy of AI in a clinical setting, these AI models should be compared to that of radiologists. The included and evaluated AI algorithms showed promising results. These algorithms can potentially ease and speed up diagnosis once the studies are replicated and their performances are assessed in clinical settings, potentially saving millions of lives.

16.
Diagnostics (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37189517

RESUMO

Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence.

17.
Acad Radiol ; 29 Suppl 1: S199-S210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985925

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study is to improve accuracy of near-term breast cancer risk prediction by applying a new mammographic image conversion method combined with a two-stage artificial neural network (ANN)-based classification scheme. MATERIALS AND METHODS: The dataset included 168 negative mammography screening cases. In developing and testing our new risk model, we first converted the original grayscale value (GV)-based mammographic images into optical density (OD)-based images. For each case, our computer-aided scheme then computed two types of image features representing bilateral asymmetry and the maximum of the image features computed from GV and OD images, respectively. A two-stage classification scheme consisting of three ANNs was developed. The first stage included two ANNs trained using features computed separately from GV and OD images of 138 cases. The second stage included another ANN to fuse the prediction scores produced by two ANNs in the first stage. The risk prediction performance was tested using the rest 30 cases. RESULTS: With the two-stage classification scheme, the computed area under the receiver operating characteristic curve (AUC) was 0.816 ± 0.071, which was significantly higher than the AUC values of 0.669 ± 0.099 and 0.646 ± 0.099 achieved using two ANNs trained using GV features and OD features, respectively (P < .05). CONCLUSION: This study demonstrated that applying an OD image conversion method can acquire new complimentary information to those acquired from the original images. As a result, fusion image features computed from these two types of images yielded significantly higher performance in near-term breast cancer risk prediction.


Assuntos
Neoplasias da Mama , Mama/diagnóstico por imagem , Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Redes Neurais de Computação , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
18.
Front Med (Lausanne) ; 9: 893208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721050

RESUMO

Pneumonia and pulmonary edema are the most common causes of acute respiratory failure in emergency and intensive care. Airway maintenance and heart function preservation are two foundations for resuscitation. Laboratory examinations have been utilized for clinicians to early differentiate pneumonia and pulmonary edema; however, none can provide results as prompt as radiology examinations, such as portable chest X-ray (CXR), which can quickly deliver results without mobilizing patients. However, similar features between pneumonia and pulmonary edema are found in CXR. It remains challenging for Emergency Department (ED) physicians to make immediate decisions as radiologists cannot be on-site all the time and provide support. Thus, Accurate interpretation of images remains challenging in the emergency setting. References have shown that deep convolutional neural networks (CNN) have a high sensitivity in CXR readings. In this retrospective study, we collected the CXR images of patients over 65 hospitalized with pneumonia or pulmonary edema diagnosis between 2016 and 2020. After using the ICD-10 codes to select qualified patient records and removing the duplicated ones, we used keywords to label the image reports found in the electronic medical record (EMR) system. After that, we categorized their CXR images into five categories: positive correlation, negative correlation, no correlation, low correlation, and high correlation. Subcategorization was also performed to better differentiate characteristics. We applied six experiments includes the crop interference and non-interference categories by GoogLeNet and applied three times of validations. In our best model, the F1 scores for pneumonia and pulmonary edema are 0.835 and 0.829, respectively; accuracy rate: 83.2%, Recall rate: 83.2%, positive predictive value: 83.3%, and F1 Score: 0.832. After the validation, the best accuracy rate of our model can reach up to 73%. The model has a high negative predictive value of excluding pulmonary edema, meaning the CXR shows no sign of pulmonary edema. At the time, there was a high positive predictive value in pneumonia. In that way, we could use it as a clinical decision support (CDS) system to rule out pulmonary edema and rule in pneumonia contributing to the critical care of the elderly.

19.
Ann Transl Med ; 10(4): 201, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280381

RESUMO

Background: This study proposed a precise diagnostic model for malignant solitary pulmonary nodules (SPNs). This model can be used to identify objective and quantifiable image features and guide the clinical treatment strategy adopted for SPNs. This model will help clinicians optimize management strategies for SPN. Methods: In this retrospective study, the clinical data of 455 patients of SPN with defined pathological diagnosis between September 2016 and August 2019 were collected and analyzed. The data included pathological diagnosis, preoperative computed tomography (CT) diagnosis, gender, age, smoking history, family history of tumor, previous history, and contact history data. The quantitative image features and radiomic information of the SPNs were provided using computer-aided detection (CAD) "digital lung" software. The Chi-squared test was used to assess the accuracy between CAD and conventional CT in the diagnosis of SPNs. The diagnostic model for benign or malignant SPNs was developed using a multivariate logistic regression analysis that comprises 6 radiomic factors (irregularity, average diameter, COPD910, proportion of emphysema, proportion of fat, and average density of related blood vessels). The area under the receiver operating characteristic curve was used to evaluate the performance of the model in determining SPN risk of malignancy. Results: There was a statistical difference in the accuracy of CAD and conventional CT in diagnosing SPNs. According to the golden standard pathological diagnosis, the diagnostic accuracy of CAD (81%) was higher than that of conventional CT (63.7%) (P<0.05). Six variables (i.e., irregularity, the mean diameter, COPD910, the proportion of emphysema, the proportion of fat, and the vascular density) were identified using multivariable logistic regression to establish the diagnostic model for distinguish benign or malignant SPNs. The area under the receiver operating characteristic (ROC) curve (AUC) of the diagnostic model was 0.876 (95% CI: 0.8445-0.9076), and its sensitivity and specificity were 81.25% and 82.56% respectively. Conclusions: The proposed diagnostic model, which comprises 6 radiomic factors, is accurate and effective at diagnosing benign or malignant SPNs.

20.
Front Public Health ; 10: 1071673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568775

RESUMO

This study aimed at implementing practice to build a standardized protocol to test the performance of computer-aided detection (CAD) algorithms for pulmonary nodules. A test dataset was established according to a standardized procedure, including data collection, curation and annotation. Six types of pulmonary nodules were manually annotated as reference standard. Three specific rules to match algorithm output with reference standard were applied and compared. These rules included: (1) "center hit" [whether the center of algorithm highlighted region of interest (ROI) hit the ROI of reference standard]; (2) "center distance" (whether the distance between algorithm highlighted ROI center and reference standard center was below a certain threshold); (3) "area overlap" (whether the overlap between algorithm highlighted ROI and reference standard was above a certain threshold). Performance metrics were calculated and the results were compared among ten algorithms under test (AUTs). The test set currently consisted of CT sequences from 593 patients. Under "center hit" rule, the average recall rate, average precision, and average F1 score of ten algorithms under test were 54.68, 38.19, and 42.39%, respectively. Correspondingly, the results under "center distance" rule were 55.43, 38.69, and 42.96%, and the results under "area overlap" rule were 40.35, 27.75, and 31.13%. Among the six types of pulmonary nodules, the AUTs showed the highest miss rate for pure ground-glass nodules, with an average of 59.32%, followed by pleural nodules and solid nodules, with an average of 49.80 and 42.21%, respectively. The algorithm testing results changed along with specific matching methods adopted in the testing process. The AUTs showed uneven performance on different types of pulmonary nodules. This centralized testing protocol supports the comparison between algorithms with similar intended use, and helps evaluate algorithm performance.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Computadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA