RESUMO
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living Caenorhabditis elegans embryos to measure the force generated inside the cell. We used a centrifuge polarizing microscope to apply centrifugal force and orientation-independent differential interference contrast microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~12 pN/µm depending on the distance from the center. The frictional coefficient was ~980 pN s/µm. The measured values were smaller than the previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. The frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Assuntos
Caenorhabditis elegans , Núcleo Celular , Embrião não Mamífero , Microtúbulos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/citologia , Núcleo Celular/metabolismo , Embrião não Mamífero/citologia , Microtúbulos/metabolismo , Centrifugação , Citoplasma/metabolismoRESUMO
Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast. In this Review, we provide an overview of the basics behind the technique, discuss its applications for biologists and provide an outlook on the future of this emerging technique for biology. We introduce the latest advances in the field, such as whole human organs imaged with micron resolution, using X-rays as a tool for virtual histology and resolving neuronal connections in the brain.
Assuntos
Síncrotrons , Humanos , Animais , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodosRESUMO
Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.
Assuntos
Flúor , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Hipóxia , OxigênioRESUMO
Covert endogenous (voluntary) attention improves visual performance. Human neuroimaging studies suggest that the putative human homolog of macaque frontal eye fields (FEF+) is critical for this improvement, whereas early visual areas are not. Yet, correlational MRI methods do not manipulate brain function. We investigated whether rFEF+ or V1/V2 plays a causal role in endogenous attention. We used transcranial magnetic stimulation (TMS) to alter activity in the visual cortex or rFEF+ when observers performed an orientation discrimination task while attention was manipulated. On every trial, they received double-pulse TMS at a predetermined site (stimulated region) around V1/V2 or rFEF+. Two cortically magnified gratings were presented, one in the stimulated region (contralateral to the stimulated area) and another in the symmetric (ipsilateral) nonstimulated region. Grating contrast was varied to measure contrast response functions (CRFs) for all attention and stimulation combinations. In experiment 1, the CRFs were similar at the stimulated and nonstimulated regions, indicating that early visual areas do not modulate endogenous attention during stimulus presentation. In contrast, occipital TMS eliminates exogenous (involuntary) attention effects on performance [A. Fernández, M. Carrasco,Curr. Biol. 30, 4078-4084 (2020)]. In experiment 2, rFEF+ stimulation decreased the overall attentional effect; neither benefits at the attended location nor costs at the unattended location were significant. The frequency and directionality of microsaccades mimicked this pattern: Whereas occipital stimulation did not affect microsaccades, rFEF+ stimulation caused a higher microsaccade rate directed toward the stimulated hemifield. These results provide causal evidence of the role of this frontal region for endogenous attention.
Assuntos
Estimulação Magnética Transcraniana , Córtex Visual , Humanos , Animais , Lobo Occipital , Lobo Frontal , MacacaRESUMO
We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.
Assuntos
Meios de Contraste , Cobre , Cobre/metabolismo , Meios de Contraste/química , Imageamento por Ressonância Magnética , Sítios de Ligação , PeptídeosRESUMO
Structural details of a genome packaged in a viral capsid are essential for understanding how the structural arrangement of a viral genome in a capsid controls its release dynamics during infection, which critically affects viral replication. We previously found a temperature-induced, solid-like to fluid-like mechanical transition of packaged λ-genome that leads to rapid DNA ejection. However, an understanding of the structural origin of this transition was lacking. Here, we use small-angle neutron scattering (SANS) to reveal the scattering form factor of dsDNA packaged in phage λ capsid by contrast matching the scattering signal from the viral capsid with deuterated buffer. We used small-angle X-ray scattering and cryoelectron microscopy reconstructions to determine the initial structural input parameters for intracapsid DNA, which allows accurate modeling of our SANS data. As result, we show a temperature-dependent density transition of intracapsid DNA occurring between two coexisting phases-a hexagonally ordered high-density DNA phase in the capsid periphery and a low-density, less-ordered DNA phase in the core. As the temperature is increased from 20 °C to 40 °C, we found that the core-DNA phase undergoes a density and volume transition close to the physiological temperature of infection (~37 °C). The transition yields a lower energy state of DNA in the capsid core due to lower density and reduced packing defects. This increases DNA mobility, which is required to initiate rapid genome ejection from the virus capsid into a host cell, causing infection. These data reconcile our earlier findings of mechanical DNA transition in phage.
Assuntos
Bacteriófago lambda , Capsídeo , Bacteriófago lambda/genética , Capsídeo/química , Temperatura , Microscopia Crioeletrônica , DNA Viral/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análiseRESUMO
Respiratory X-ray imaging enhanced by phase contrast has shown improved airway visualization in animal models. Limitations in current X-ray technology have nevertheless hindered clinical translation, leaving the potential clinical impact an open question. Here, we explore phase-contrast chest radiography in a realistic in silico framework. Specifically, we use preprocessed virtual patients to generate in silico chest radiographs by Fresnel-diffraction simulations of X-ray wave propagation. Following a reader study conducted with clinical radiologists, we predict that phase-contrast edge enhancement will have a negligible impact on improving solitary pulmonary nodule detection (6 to 20 mm). However, edge enhancement of bronchial walls visualizes small airways (< 2 mm), which are invisible in conventional radiography. Our results show that phase-contrast chest radiography could play a future role in observing small-airway obstruction (e.g., relevant for asthma or early-stage chronic obstructive pulmonary disease), which cannot be directly visualized using current clinical methods, thereby motivating the experimental development needed for clinical translation. Finally, we discuss quantitative requirements on distances and X-ray source/detector specifications for clinical implementation of phase-contrast chest radiography.
Assuntos
Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Animais , Tomografia Computadorizada por Raios X/métodos , Radiografia Torácica , Radiografia , Nódulo Pulmonar Solitário/diagnóstico por imagemRESUMO
SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.
Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Meios de Contraste/química , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Colágeno/análiseRESUMO
Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.
Assuntos
Córtex Auditivo , Camundongos , Masculino , Feminino , Animais , Estimulação Acústica , Córtex Auditivo/fisiologia , Pupila , Zinco , Som , Percepção Auditiva/fisiologiaRESUMO
Quantifying the effects of free breathing on cerebral venous flow is crucial for understanding cerebral circulation mechanisms and clinical applications. Unlike conventional cine phase-contrast MRI sequences (CINE-PC), real-time phase-contrast MRI sequences (RT-PC) can provide a continuous beat-to-beat flow signal that makes it possible to quantify the effect of breathing on cerebral venous flow. In this study, we examined 28 healthy human participants, comprising of 14 males and 14 females. Blood flows in the right/left internal jugular veins in the extracranial plane and the superior sagittal sinus (SSS) and straight sinus in the intercranial plane were quantified using CINE-PC and RT-PC. The first objective of this study was to determine the accuracy of RT-PC in quantifying cerebral venous flow, relative to CINE-PC. The second, and main objective, was to quantify the effect of free breathing on cerebral venous flow, using a time-domain multiparameter analysis method. Our results showed that RT-PC can accurately quantify cerebral venous flow with a 2 × 2â mm2 spatial resolution and 75â ms/image time resolution. The mean flow rate, amplitude, stroke volume, and cardiac period of cerebral veins were significantly higher from the mid-end phase of expiration to the mid-end phase of inspiration. Breathing affected the mean flow rates in the jugular veins more than those in the SSS and straight sinus. Furthermore, the effects of free breathing on the flow rate of the left and right jugular veins were not synchronous. These new findings provide a useful reference for better understanding the mechanisms of cerebral circulation.
Assuntos
Veias Cerebrais , Masculino , Adulto , Feminino , Humanos , Veias Cerebrais/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular , Veias Jugulares/diagnóstico por imagemRESUMO
The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.
Assuntos
Ritmo alfa , Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Ritmo alfa/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Sensibilidades de Contraste/fisiologia , Adulto Jovem , Método Duplo-Cego , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Fadiga Mental/fisiopatologiaRESUMO
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10â Hz (alpha) or 40â Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Assuntos
Ritmo alfa , Atenção , Estimulação Transcraniana por Corrente Contínua , Percepção Visual , Humanos , Feminino , Masculino , Atenção/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Percepção Visual/fisiologia , Adulto Jovem , Ritmo alfa/fisiologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Campos Visuais/fisiologiaRESUMO
Ocular position drifts during gaze fixation are significantly less well understood than microsaccades. We recently identified a short-latency ocular position drift response, of â¼1â min arc amplitude, that is triggered within <100â ms by visual onsets. This systematic eye movement response is feature-tuned and seems to be coordinated with a simultaneous resetting of the saccadic system by visual stimuli. However, much remains to be learned about the drift response, especially for designing better-informed neurophysiological experiments unraveling its mechanistic substrates. Here we systematically tested multiple new feature tuning properties of drift responses. Using highly precise eye tracking in three male rhesus macaque monkeys, we found that drift responses still occur for tiny foveal visual stimuli. Moreover, the responses exhibit size tuning, scaling their amplitude (both up and down) as a function of stimulus size, and they also possess a monotonically increasing contrast sensitivity curve. Importantly, short-latency drift responses still occur for small peripheral visual targets, which additionally introduce spatially directed modulations in drift trajectories toward the appearing peripheral stimuli. Drift responses also remain predominantly upward even for stimuli exclusively located in the lower visual field and even when starting gaze position is upward. When we checked the timing of drift responses, we found it was better synchronized to stimulus-induced saccadic inhibition than to stimulus onset. These results, along with a suppression of drift response amplitudes by peristimulus saccades, suggest that drift responses reflect the rapid impacts of short-latency and feature-tuned visual neural activity on final oculomotor control circuitry in the brain.
Assuntos
Fixação Ocular , Visão Ocular , Animais , Masculino , Macaca mulatta , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual/fisiologiaRESUMO
The surprising omission or reduction of vital resources (food, fluid, social partners) can induce an aversive emotion known as frustrative nonreward (FNR), which can influence subsequent behavior and physiology. FNR is an integral mediator of irritability/aggression, motivation (substance use disorders, depression), anxiety/fear/threat, learning/conditioning, and social behavior. Despite substantial progress in the study of FNR during the twentieth century, research lagged in the later part of the century and into the early twenty-first century until the National Institute of Mental Health's Research Domain Criteria initiative included FNR and loss as components of the negative valence domain. This led to a renaissance of new research and paradigms relevant to basic and clinical science alike. The COVID-19 pandemic's extensive individual and social restrictions were correlated with increased drug and alcohol use, social conflict, irritability, and suicide, all potential consequences of FNR. This article highlights animal models related to these psychiatric disorders and symptoms and presents recent advances in identifying the brain regions and neurotransmitters implicated.
Assuntos
COVID-19 , Humanos , Animais , COVID-19/psicologia , Transtornos Mentais/psicologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Emoções/fisiologia , NeuroquímicaRESUMO
With every saccadic eye movement, humans bring new information into their fovea to be processed with high visual acuity. Notably, perception is enhanced already before a relevant item is foveated: During saccade preparation, presaccadic attention shifts to the upcoming fixation location, which can be measured via behavioral correlates such as enhanced visual performance or modulations of sensory feature tuning. The coupling between saccadic eye movements and attention is assumed to be robust and mandatory and considered a mechanism facilitating the integration of pre- and postsaccadic information. However, until recently it had not been investigated as a function of saccade direction. Here, we measured contrast response functions during fixation and saccade preparation in male and female observers and found that the pronounced response gain benefit typically elicited by presaccadic attention is selectively lacking before upward saccades at the group level-some observers even showed a cost. Individual observer's sensitivity before upward saccades was negatively related to their amount of surface area in primary visual cortex representing the saccade target, suggesting a potential compensatory mechanism that optimizes the use of the limited neural resources processing the upper vertical meridian. Our results raise the question of how perceptual continuity is achieved and how upward saccades can be accurately targeted despite the lack of-theoretically required-presaccadic attention.
Assuntos
Movimentos Oculares , Movimentos Sacádicos , Masculino , Feminino , Humanos , Atenção/fisiologia , Fóvea Central , Percepção Visual/fisiologia , Estimulação LuminosaRESUMO
Advances in single-cell multi-omics technology provide an unprecedented opportunity to fully understand cellular heterogeneity. However, integrating omics data from multiple modalities is challenging due to the individual characteristics of each measurement. Here, to solve such a problem, we propose a contrastive and generative deep self-expression model, called single-cell multimodal self-expressive integration (scMSI), which integrates the heterogeneous multimodal data into a unified manifold space. Specifically, scMSI first learns each omics-specific latent representation and self-expression relationship to consider the characteristics of different omics data by deep self-expressive generative model. Then, scMSI combines these omics-specific self-expression relations through contrastive learning. In such a way, scMSI provides a paradigm to integrate multiple omics data even with weak relation, which effectively achieves the representation learning and data integration into a unified framework. We demonstrate that scMSI provides a cohesive solution for a variety of analysis tasks, such as integration analysis, data denoising, batch correction and spatial domain detection. We have applied scMSI on various single-cell and spatial multimodal datasets to validate its high effectiveness and robustness in diverse data types and application scenarios.
Assuntos
Aprendizagem , MultiômicaRESUMO
The effects of the obliteration of portal venules (OPV) in cirrhotic portal hypertension are poorly understood. To investigate its contribution to portal hypertension in biliary cirrhosis and its underlying mechanism, we evaluated OPV using two-dimensional (2D) histopathology in liver explants from patients with biliary atresia (BA, n = 63), primary biliary cholangitis (PBC, n = 18), and hepatitis B-related cirrhosis (Hep-B-cirrhosis, n = 35). Then, three-dimensional (3D) OPV was measured by X-ray phase-contrast CT in two parallel models in rats following bile duct ligation (BDL) or carbon tetrachloride (CCl4) administration, representing biliary cirrhosis and post-necrotic cirrhosis, respectively. The portal pressure was also measured in the two models. Finally, the effects of proliferative bile ducts on OPV were investigated. We found that OPV was significantly more frequent in patients with biliary cirrhosis, including BA (78.57 ± 16.45%) and PBC (60.00 ± 17.15%), than that in Hep-B-cirrhotic patients (29.43 ± 14.94%, p < 0.001). OPV occurred earlier, evidenced by the paired liver biopsy at a Kasai procedure (KP), and was irreversible even after a successful KP in the patients with BA. OPV was also significantly more frequent in the BDL models than in the CCl4 models, as shown by 2D and 3D quantitative analysis. Portal pressure was significantly higher in the BDL model than that in the CCl4 model. With the proliferation of bile ducts, portal venules were compressed and irreversibly occluded, contributing to the earlier and higher portal pressure in biliary cirrhosis. OPV, as a pre-sinusoidal component, plays a key role in the pathogenesis of portal hypertension in biliary cirrhosis. The proliferated bile ducts and ductules gradually take up the 'territory' originally attributed to portal venules and compress the portal venules, which may lead to OPV in biliary cirrhosis. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
Hipertensão Portal , Cirrose Hepática Biliar , Veia Porta , Hipertensão Portal/patologia , Hipertensão Portal/fisiopatologia , Animais , Cirrose Hepática Biliar/patologia , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/fisiopatologia , Masculino , Humanos , Feminino , Veia Porta/patologia , Vênulas/patologia , Ratos , Adulto , Pressão na Veia Porta , Pessoa de Meia-Idade , Modelos Animais de Doenças , Fígado/patologia , Fígado/irrigação sanguínea , Ratos Sprague-Dawley , Ductos Biliares/patologia , Adulto Jovem , AdolescenteRESUMO
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.
Assuntos
Vasos Linfáticos , Animais , Humanos , Vasos Linfáticos/metabolismo , Sistema Nervoso Central , Encéfalo/fisiologia , Meninges/fisiologia , Imageamento por Ressonância MagnéticaRESUMO
The brain's connectome provides the scaffold for canonical neural computations. However, a comparison of connectivity studies in the mouse primary visual cortex (V1) reveals that the average number and strength of connections between specific neuron types can vary. Can variability in V1 connectivity measurements coexist with canonical neural computations? We developed a theory-driven approach to deduce V1 network connectivity from visual responses in mouse V1 and visual thalamus (dLGN). Our method revealed that the same recorded visual responses were captured by multiple connectivity configurations. Remarkably, the magnitude and selectivity of connectivity weights followed a specific order across most of the inferred connectivity configurations. We argue that this order stems from the specific shapes of the recorded contrast response functions and contrast invariance of orientation tuning. Remarkably, despite variability across connectivity studies, connectivity weights computed from individual published connectivity reports followed the order we identified with our method, suggesting that the relations between the weights, rather than their magnitudes, represent a connectivity motif supporting canonical V1 computations.
Assuntos
Córtex Visual , Animais , Camundongos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologiaRESUMO
A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.